Do you want to publish a course? Click here

Magnitude cohomology

72   0   0.0 ( 0 )
 Added by Richard Hepworth
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. Here we introduce the dual theory, magnitude cohomology, which we equip with the structure of an associative unital graded ring. Our first main result is a recovery theorem showing that the magnitude cohomology ring of a finite metric space completely determines the space itself. The magnitude cohomology ring is non-commutative in general, for example when applied to finite metric spaces, but in some settings it is commutative, for example when applied to ordinary categories. Our second main result explains this situation by proving that the magnitude cohomology ring of an enriched category is graded-commutative whenever the enriching category is cartesian. We end the paper by giving complete computations of magnitude cohomology rings for several large classes of graphs.



rate research

Read More

Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call magnitude homology (in fact, it is a special sort of Hochschild homology), whose graded Euler characteristic is the magnitude. Magnitude homology of metric spaces generalizes the Hepworth--Willerton magnitude homology of graphs, and detects geometric information such as convexity.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.
152 - David Blanc , Mark W. Johnson , 2008
The aim of this paper is to construct and examine three candidates for local-to-global spectral sequences for the cohomology of diagrams of algebras with directed indexing. In each case, the $E^2$ -terms can be viewed as a type of local cohomology relative to a map or an object in the diagram.
In this paper we introduce the persistent magnitude, a new numerical invariant of (sufficiently nice) graded persistence modules. It is a weighted and signed count of the bars of the persistence module, in which a bar of the form $[a,b)$ in degree $d$ is counted with weight $(e^{-a}-e^{-b})$ and sign $(-1)^d$. Persistent magnitude has good formal properties, such as additivity with respect to exact sequences and compatibility with tensor products, and has interpretations in terms of both the associated graded functor, and the Laplace transform. Our definition is inspired by Otters notion of blurred magnitude homology: we show that the magnitude of a finite metric space is precisely the persistent magnitude of its blurred magnitude homology. Turning this result on its head, we obtain a strategy for turning existing persistent homology theories into new numerical invariants by applying the persistent magnitude. We explore this strategy in detail in the case of persistent homology of Morse functions, and in the case of Rips homology.
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا