Do you want to publish a course? Click here

Adaptive Neural Trees

72   0   0.0 ( 0 )
 Added by Kai Arulkumaran
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is characterised by learning hierarchies over pre-specified features with data-driven architectures. We unite the two via adaptive neural trees (ANTs) that incorporates representation learning into edges, routing functions and leaf nodes of a decision tree, along with a backpropagation-based training algorithm that adaptively grows the architecture from primitive modules (e.g., convolutional layers). We demonstrate that, whilst achieving competitive performance on classification and regression datasets, ANTs benefit from (i) lightweight inference via conditional computation, (ii) hierarchical separation of features useful to the task e.g. learning meaningful class associations, such as separating natural vs. man-made objects, and (iii) a mechanism to adapt the architecture to the size and complexity of the training dataset.



rate research

Read More

189 - Samuel Schmidgall 2020
The adaptive learning capabilities seen in biological neural networks are largely a product of the self-modifying behavior emerging from online plastic changes in synaptic connectivity. Current methods in Reinforcement Learning (RL) only adjust to new interactions after reflection over a specified time interval, preventing the emergence of online adaptivity. Recent work addressing this by endowing artificial neural networks with neuromodulated plasticity have been shown to improve performance on simple RL tasks trained using backpropagation, but have yet to scale up to larger problems. Here we study the problem of meta-learning in a challenging quadruped domain, where each leg of the quadruped has a chance of becoming unusable, requiring the agent to adapt by continuing locomotion with the remaining limbs. Results demonstrate that agents evolved using self-modifying plastic networks are more capable of adapting to complex meta-learning learning tasks, even outperforming the same network updated using gradient-based algorithms while taking less time to train.
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected.
In the domain of machine learning, Neural Memory Networks (NMNs) have recently achieved impressive results in a variety of application areas including visual question answering, trajectory prediction, object tracking, and language modelling. However, we observe that the attention based knowledge retrieval mechanisms used in current NMNs restricts them from achieving their full potential as the attention process retrieves information based on a set of static connection weights. This is suboptimal in a setting where there are vast differences among samples in the data domain; such as anomaly detection where there is no consistent criteria for what constitutes an anomaly. In this paper, we propose a plastic neural memory access mechanism which exploits both static and dynamic connection weights in the memory read, write and output generation procedures. We demonstrate the effectiveness and flexibility of the proposed memory model in three challenging anomaly detection tasks in the medical domain: abnormal EEG identification, MRI tumour type classification and schizophrenia risk detection in children. In all settings, the proposed approach outperforms the current state-of-the-art. Furthermore, we perform an in-depth analysis demonstrating the utility of neural plasticity for the knowledge retrieval process and provide evidence on how the proposed memory model generates sparse yet informative memory outputs.
We seek to investigate the scalability of neuromorphic computing for computer vision, with the objective of replicating non-neuromorphic performance on computer vision tasks while reducing power consumption. We convert the deep Artificial Neural Network (ANN) architecture U-Net to a Spiking Neural Network (SNN) architecture using the Nengo framework. Both rate-based and spike-based models are trained and optimized for benchmarking performance and power, using a modified version of the ISBI 2D EM Segmentation dataset consisting of microscope images of cells. We propose a partitioning method to optimize inter-chip communication to improve speed and energy efficiency when deploying multi-chip networks on the Loihi neuromorphic chip. We explore the advantages of regularizing firing rates of Loihi neurons for converting ANN to SNN with minimum accuracy loss and optimized energy consumption. We propose a percentile based regularization loss function to limit the spiking rate of the neuron between a desired range. The SNN is converted directly from the corresponding ANN, and demonstrates similar semantic segmentation as the ANN using the same number of neurons and weights. However, the neuromorphic implementation on the Intel Loihi neuromorphic chip is over 2x more energy-efficient than conventional hardware (CPU, GPU) when running online (one image at a time). These power improvements are achieved without sacrificing the task performance accuracy of the network, and when all weights (Loihi, CPU, and GPU networks) are quantized to 8 bits.
116 - Edmondo Trentin 2020
Albeit worryingly underrated in the recent literature on machine learning in general (and, on deep learning in particular), multivariate density estimation is a fundamental task in many applications, at least implicitly, and still an open issue. With a few exceptions, deep neural networks (DNNs) have seldom been applied to density estimation, mostly due to the unsupervised nature of the estimation task, and (especially) due to the need for constrained training algorithms that ended up realizing proper probabilistic models that satisfy Kolmogorovs axioms. Moreover, in spite of the well-known improvement in terms of modeling capabilities yielded by mixture models over plain single-density statistical estimators, no proper mixtures of multivariate DNN-based component densities have been investigated so far. The paper fills this gap by extending our previous work on Neural Mixture Densities (NMMs) to multivariate DNN mixtures. A maximum-likelihood (ML) algorithm for estimating Deep NMMs (DNMMs) is handed out, which satisfies numerically a combination of hard and soft constraints aimed at ensuring satisfaction of Kolmogorovs axioms. The class of probability density functions that can be modeled to any degree of precision via DNMMs is formally defined. A procedure for the automatic selection of the DNMM architecture, as well as of the hyperparameters for its ML training algorithm, is presented (exploiting the probabilistic nature of the DNMM). Experimental results on univariate and multivariate data are reported on, corroborating the effectiveness of the approach and its superiority to the most popular statistical estimation techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا