No Arabic abstract
Condensed matter systems realizing Weyl fermions exhibit striking phenomenology derived from their topologically protected surface states as well as chiral anomalies induced by electromagnetic fields. More recently, inhomogeneous strain or magnetization were predicted to result in chiral electric $mathbf{E}_5$ and magnetic $mathbf{B}_5$ fields, which modify and enrich the chiral anomaly with additional terms. In this work, we develop a lattice-based approach to describe the chiral anomaly, which involves Landau and pseudo-Landau levels and treats all anomalous terms on equal footing, while naturally incorporating Fermi arcs. We exemplify its potential by physically interpreting the largely overlooked role of Fermi arcs in the covariant (Fermi level) contribution to the anomaly and revisiting the factor of $1/3$ difference between the covariant and consistent (complete band) contributions to the $mathbf{E}_5cdotmathbf{B}_5$ term in the anomaly. Our framework provides a versatile tool for the analysis of anomalies in realistic lattice models as well as a source of simple physical intuition for understanding strained and magnetized inhomogeneous Weyl semimetals.
We show that the thin films of Weyl semimetals have a regime of parameters in which they develop very flat Landau bands under strong magnetic fields. Addressing the case of thin films in a perpendicular magnetic field, we observe that two different types of Landau states may arise depending on whether the line connecting a pair of opposite Weyl nodes is parallel or perpendicular to the direction of the magnetic field. In the latter instance, we show that the flat Landau bands are made of states peaked at the two faces of the thin film. When the line connecting the Weyl nodes is parallel to the magnetic field, we see instead that the states in the Landau bands take the form of stationary waves with significant amplitude across the bulk of the material. In either case, the states in the flat levels are confined along longitudinal sections of the thin film, turning into edge states with distinctive profiles at the lateral boundaries for the two different types of Hall effect.
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubic-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
It is well known that on the surface of Weyl semimetals, Fermi arcs appear as the topologically protected surface states. In this work, we give a semiclassical explanation for the morphology of the surface Fermi arcs. Viewing the surface states as a two-dimensional Fermi gas subject to band bending and Berry curvatures, we show that it is the non-parallelism between the velocity and the momentum that gives rise to the spiraling Fermi arcs. We map out the Fermi arcs from the velocity field for a single Weyl point and a lattice with two Weyl points. We also investigate the surface magnetoplasma of Dirac semimetals in a magnetic field. In this case, the surface states obtains chiral nature from both drift motion and the chiral magnetic effect, resulting in Fermi arcs. We also discuss the important role played by the Imbert-Fedorov shift in the formation of surface Fermi arcs.
We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependences. We also discuss properties of magneto-plasmons and magneto-polaritons, whose existence is entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasi-classical description of electron transport phenomena related to the chiral anomaly.
Weyl semimetals are well-known for hosting topologically protected linear band crossings, serving as the analog of the relativistic Weyl Fermions in the condensed matter context. Such analogy persists deeply, allowing the existence of the chiral anomaly under parallel electric and magnetic field in Weyl semimetals. Different from such picture, here we show that, a unique mechanism of the chiral anomaly exists in Weyl semimetals by injecting a spin current with parallel spin polarization and flow direction. The existence of such a chiral anomaly is protected by the topological feature that each Weyl cone can also be a source or drain of the spin field in the momentum space. It leads to measurable experimental signals, such as an electric charge current parallel with an applied magnetic field in the absence of the electric field, and a sharp peak at certain resonant frequency in the injection current in achiral Weyl semimetals through the circular photogalvanic effect. Our work shows that the topological implication of Weyl semimetals goes beyond the link with relativistic Weyl Fermions, and offers a promising scenario to examine the interplay between topology and spin.