Do you want to publish a course? Click here

Impact-parameter analysis of the new TOTEM pp data at 13 TeV: black disk limit excess

104   0   0.0 ( 0 )
 Added by Anton Alkin
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We revisit a discussion on the impact-parameter dependence of proton-proton elastic scattering amplitude with improved uncertainty calculation. This analysis allows to reveal the asymptotic properties of hadron interactions. New data indicates that the impact-parameter elastic scattering amplitude is slightly above the black disk limit at 13~TeV c.m.s. energy of the LHC reaching a value of $mathrm{Im},H(s,0) = 0.512pm 0.001 text{(sys+stat)} pm 0.004 text{(norm)}$ confirming that black disk limit is violated at current collision energy, however it was not exceeded at 7~TeV. The growth trend of the impact-parameter amplitude imaginary part, extrapolated from previous and new data, indicates that it is unlikely that the amplitude is close to saturation. New analysis is consistent with smooth energy evolution of the elastic scattering amplitude and supersedes the earlier conclusion on the black disk limit excess observed at 7~TeV.



rate research

Read More

The recent data by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ at 13 TeV, have shown agreement with a leading Odderon contribution at the highest energies, as demonstrated in the very recent analysis by Martynov and Nicolescu (MN). In order to investigate the same dataset by means of Pomeron dominance, we introduce a general class of forward scattering amplitude, with leading contributions even under crossing, associated with simple, double and triple poles in the complex angular momentum plane. For the lower energy region, we consider the usual non-degenerated Regge trajectories, with even and odd symmetry. The analytic connection between $sigma_{tot}$ and $rho$ is obtained by means of dispersion relations and we carry out fits to $pp$ and $bar{p}p$ data in the interval $sqrt{s}=5$ GeV - 13 TeV; following MN we consider only the TOTEM data at the LHC energy region. From the fits, we conclude that the general analytic model, as well as some particular cases representing standard parameterizations, are not able to describe satisfactorily the $sigma_{tot}$ and $rho$ data at 13 TeV. Further analyses in course and some perspectives are outlined.
Coherent analyses at future LHC and LC experiments can be used to explore the breaking mechanism of supersymmetry and to reconstruct the fundamental theory at high energies, in particular at the grand unification scale. This will be exemplified for minimal supergravity.
64 - Dimitri Bourilkov 2016
The production of high invariant mass opposite sign lepton pairs in proton-proton collisions at the LHC is dominated by the Drell-Yan process. In addition to this photon or Z exchange mediated mechanism, gamma-gamma collisions, where photons radiated by the incoming protons collide, can produce lepton pairs. This is an important additional source of background for high mass resonant (like Z) or non-resonant (like contact interactions) searches. In this paper detailed calculations of the Drell-Yan and photon-induced cross sections in the typical acceptance of a multi-purpose LHC detector at center of mass energy 13 TeV are presented. The hint for a diphoton excess at a mass around 750 GeV, reported by the ATLAS and CMS experiments from the analysis of the 2015 data at 13 TeV, raises the possibility that such an excess could be produced through gamma-gamma collisions. A good theoretical understanding and measurements in the dilepton channels at these energies can help to elucidate this production hypothesis.
The TOTEM collaboration has measured the elastic proton-proton differential cross section ${rm d}sigma/{rm d}t$ at $sqrt{s}=13$ TeV LHC energy using dedicated $beta^{*}=90$ m beam optics. The Roman Pot detectors were inserted to 10$sigma$ distance from the LHC beam, which allowed the measurement of the range $[0.04$ GeV$^{2}$$; 4 $GeV$^{2}$$]$ in four-momentum transfer squared $|t|$. The efficient data acquisition allowed to collect about 10$^{9}$ elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-$|t|$ tail. The average nuclear slope has been found to be $B=(20.40 pm 0.002^{rm stat} pm 0.01^{rm syst})~$GeV$^{-2}$ in the $|t|$-range $0.04~$GeV$^{2}$ to $0.2~$GeV$^{2}$. The dip position is $|t_{rm dip}|=(0.47 pm 0.004^{rm stat} pm 0.01^{rm syst})~$GeV$^{2}$. The differential cross section ratio at the bump vs. at the dip $R=1.77pm0.01^{rm stat}$ has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.
Very precise data on elastic proton-proton scattering at $sqrt{s}=7$, $8$ and $13$ TeV have been obtained by the TOTEM group at LHC in the near-forward region (momentum transfers down to $|t| = 6 times 10^{-4} {rm GeV}^2$ at $sqrt{s}=8$ TeV and to $|t| = 8 times 10^{-4} {rm GeV}^2$ at $sqrt{s}=13$ TeV). The Coulomb-nuclear interference has been measured with sufficient accuracy for TOTEM to establish the falloff of the $rho$ parameter with increasing energy. The predictions from a previously studied model are shown to be in good agreement with the data and thus allow us to draw rather firm conclusions about the structure of the near-forward nuclear amplitude. We point out that due to a zero in the real part of the nuclear amplitude occurring at a very small momentum transfer--that can migrate into the Coulomb-nuclear interference (CNI) region at higher energies--much care is needed in extracting the numerical value of $rho$ for such energies. Thus, the true value of $rho$ would be higher than the TOTEM value for $rho$ found under the hypothesis that the real part of the elastic nuclear amplitude is devoid of such a zero in the CNI region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا