Do you want to publish a course? Click here

Elastic differential cross-section measurement at $sqrt{s}=13$ TeV by TOTEM

144   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The TOTEM collaboration has measured the elastic proton-proton differential cross section ${rm d}sigma/{rm d}t$ at $sqrt{s}=13$ TeV LHC energy using dedicated $beta^{*}=90$ m beam optics. The Roman Pot detectors were inserted to 10$sigma$ distance from the LHC beam, which allowed the measurement of the range $[0.04$ GeV$^{2}$$; 4 $GeV$^{2}$$]$ in four-momentum transfer squared $|t|$. The efficient data acquisition allowed to collect about 10$^{9}$ elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-$|t|$ tail. The average nuclear slope has been found to be $B=(20.40 pm 0.002^{rm stat} pm 0.01^{rm syst})~$GeV$^{-2}$ in the $|t|$-range $0.04~$GeV$^{2}$ to $0.2~$GeV$^{2}$. The dip position is $|t_{rm dip}|=(0.47 pm 0.004^{rm stat} pm 0.01^{rm syst})~$GeV$^{2}$. The differential cross section ratio at the bump vs. at the dip $R=1.77pm0.01^{rm stat}$ has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.



rate research

Read More

The TOTEM collaboration has measured the proton-proton total cross section at $sqrt{s}=13$ TeV with a luminosity-independent method. Using dedicated $beta^{*}=90$ m beam optics, the Roman Pots were inserted very close to the beam. The inelastic scattering rate has been measured by the T1 and T2 telescopes during the same LHC fill. After applying the optical theorem the total proton-proton cross section is $sigma_{rm tot}=(110.6 pm 3.4$) mb, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: $sigma_{rm el} = (31.0 pm 1.7)$ mb and $sigma_{rm inel} = (79.5 pm 1.8)$ mb.
The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy sqrt(s) = 8 TeV based on a high-statistics data sample obtained with the beta* = 90 optics. Both the statistical and systematic uncertainties remain below 1%, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of four-momentum transfer squared 0.027 < |t| < 0.2 GeV^2 with a significance greater than 7 sigma. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 +- 2.1) mb and (101.9 +- 2.1) mb, respectively, in agreement with previous TOTEM measurements.
We present a measurement of the elastic differential cross section $dsigma(pbar{p}rightarrow pbar{p})/dt$ as a function of the four-momentum-transfer squared t. The data sample corresponds to an integrated luminosity of $approx 31 nb^{-1}$ collected with the D0 detector using dedicated Tevatron $pbar{p} $ Collider operating conditions at sqrt(s) = 1.96 TeV and covers the range $0.26 <|t|< 1.2 GeV^2$. For $|t|<0.6 GeV^2$, dsigma/dt is described by an exponential function of the form $Ae^{-b|t|}$ with a slope parameter $ b = 16.86 pm 0.10(stat) pm 0.20(syst) GeV^{-2}$. A change in slope is observed at $|t| approx 0.6 GeV^2$, followed by a more gradual |t| dependence with increasing values of |t|.
The proton-proton elastic differential cross section ${rm d}sigma/{rm d}t$ has been measured by the TOTEM experiment at $sqrt{s}=2.76$ TeV energy with $beta^{*}=11$ m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer ($|t|$) from $0.36$ GeV$^{2}$ to $0.74$ GeV$^{2}$. The differential cross-section can be described with an exponential in the $|t|$-range between $0.36$ GeV$^{2}$ and $0.54$ GeV$^{2}$, followed by a diffractive minimum (dip) at $|t_{rm dip}| = 0.61 pm 0.03$ GeV$^{2}$ and a subsequent maximum (bump). The ratio of the ${rm d}sigma/{rm d}t$ at the bump and at the dip is $1.7pm 0.2$. When compared to the $rm pbar{p}$ measurement of the D0 experiment at $sqrt s = 1.96$ TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering.
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at $sqrt{s} = 7 $ TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا