Do you want to publish a course? Click here

Charge and spin asymmetries in elastic lepton-nucleon scattering

208   0   0.0 ( 0 )
 Added by Oleksandr Koshchii
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Elastic lepton scattering off of a nucleon has proved to be an efficient tool to study the structure of the hadron. Modern cross section and asymmetry measurements at Jefferson Lab require effects beyond the leading order Born approximation to be taken into account. Availability of unpolarized beams of both electrons and positrons in respective experiments would enable to reduce systematic uncertainties due to higher-order charge-odd contributions. In addition, information on an unpolarized electron-to-positron cross section ratio could serve as a test for theoretical models that provide predictions for charge-dependent radiative corrections to elastic lepton-nucleon scattering. Availability of polarized beams of leptons would allow for even more comprehensive study of higher-order effects as some of them are dominant in polarized lepton-nucleon scattering asymmetries. We present a brief overview of effects due to the leptons charge and targets polarization on elastic lepton-nucleon scattering measurements.



rate research

Read More

We estimate the target-normal single-spin asymmetry at nearly forward angles in elastic electron-nucleon scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the two-photon exchange (TPE) amplitude, which can be expressed as an integral over the doubly virtual Compton scattering (VVCS) tensor. We develop a model that parametrizes the VVCS tensor for the case of nearly forward scattering angles. Our parametrization ensures a proper normalization of the imaginary part of the TPE amplitude on the well-known forward limit expression, which is given in terms of nucleon structure functions measurable in inelastic electron-nucleon scattering experiments. We discuss applicability limits of our theory and provide target-normal single-spin asymmetry predictions for both elastic electron-proton and electron-neutron scattering.
193 - A.J. Buchmann 2007
To obtain further information on the geometric shape of the nucleon, the proton charge form factor is decomposed into two terms, which are connected respectively with a spherically symmetric and an intrinsic quadrupole part of the protons charge density. Quark model relations are employed to derive expressions for both terms. In particular, the protons intrinsic quadrupole form factor is obtained from a relation between the N -> Delta and neutron charge form factors. The proposed decomposition shows that the neutron charge form factor is an observable manifestation of an intrinsic quadrupole form factor of the nucleon. Furthermore, it affords an interpretation of recent electron-nucleon scattering data in terms of a nonspherical distribution of quark-antiquark pairs in the nucleon.
Transverse single-spin asymmetries in inclusive deep inelastic lepton-nucleon scattering can be generated through multiphoton exchange between the leptonic and the hadronic part of the process. Here we consider the two-photon exchange, and mainly focus on the transverse target spin asymmetry. In particular, we investigate the case where two photons couple to different quarks. Such a contribution involves a quark-photon-quark correlator in the nucleon, which has a (model-dependent) relation to the Efremov-Teryaev-Qiu-Sterman quark-gluon-quark correlator T_F. Using different parametrizations for T_F we compute the transverse target spin asymmetries for both a proton and a neutron target and compare the results to recent experimental data. In addition, potential implications for our general understanding of single-spin asymmetries in hard scattering processes are discussed.
The transverse momentum dependent (TMD) and collinear higher twist theoretical factorization frameworks are the most frequently used approaches to describing spin dependent hard cross sections weighted by and integrated over transverse momentum. Of particular interest is the contribution from small transverse momentum associated with the target bound state. In phenomenological applications, this contribution is often investigated using transverse momentum weighted integrals that sharply regulate the large transverse momentum contribution, for example with Gaussian parametrizations. Since the result is a kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the formalisms are related in applications to weighted integral observables. The suppression of a large transverse momentum tail, for example, can potentially affect the type of evolution that is applicable. We find that a naive version of a widely used identity relating the $k_T^2$-weighted and integrated Sivers TMD function to a renormalized twist-3 function has strongly ambiguous ultraviolet contributions, and that corrections to it are not necessarily perturbatively suppressed. We discuss the implications for applications, arguing in particular that the relevant evolution for transverse momentum weighted and integrated cross sections with sharp effective large transverse momentum cutoffs is of the TMD form rather than the standard renormalization group evolution of collinear correlation functions.
107 - J Nieves , R Gran , F Sanchez 2013
We discuss some nuclear effects, RPA correlations and 2p2h (multinucleon) mechanisms, on charged-current neutrino-nucleus reactions that do not produce a pion in the final state. We study a wide range of neutrino energies, from few hundreds of MeV up to 10 GeV. We also examine the influence of 2p2h mechanisms on the neutrino energy reconstruction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا