Do you want to publish a course? Click here

Experimental realization of a quantum CNOT gate for orbital angular momentum and polarization with linear optical elements

152   0   0.0 ( 0 )
 Added by Askery Canabarro
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and experimentally demonstrate that a Mach-Zehnder interferometer composed of polarized beam splitters and a pentaprism in the place of one of the mirrors works as a linear optical quantum controlled-NOT (CNOT) gate. To perform the information processing, the polarization and orbital angular momentum (OAM) of the photons act as the control and target qubits, respectively. The readout process is simple, requiring only a linear polarizer and a triangular diffractive aperture before detection. The viability and stability of the experiment makes the present proposal a valuable candidate for future implementations in optical quantum computation protocols.

rate research

Read More

Tunable beam splitter (TBS) is a fundamental component which has been widely used in optical experiments. We realize a polarization-independent orbital-angular-momentum-preserving TBS based on the combination of modified polarization beam splitters and half-wave plates. Greater than 30 dB of the extinction ratio of tunableness, lower than $6%$ of polarization dependence and more than 20 dB of the extinction ratio of OAM preservation show the relatively good performance of the TBS. In addition, the TBS can save about 3/4 of the optical elements compared with the existing scheme to implement the same functioncite{yang2016experimental}, which makes it have great advantages in scalable applications. Using this TBS, we experimentally built a Sagnac interferometer with the mean visibility of more than $99%$, which demonstrates its potential applications in quantum information process, such as quantum cryptography.
131 - Shihao Ru , Min An , Yu Yang 2021
Quantum teleportation is a useful quantum information technology to transmit quantum states between different degrees of freedom. We here report a quantum state transfer experiment in the linear optical system, transferring a single photon state in the polarization degree of freedom (DoF) to another photon in the orbital angular momentum (OAM) quantum state via a biphoton OAM entangled channel. Our experimental method is based on quantum teleportation technology. The differences between ours and the original teleportation scheme is that the transfer state is known in ours, and our method is for different particles with different DoFs while the original one is for different particles with same DoF. Besides, our present experiment is implemented with a high Bell-efficiency since each of the four hybrid-entangled Bell states can be discriminated. We use six states of poles of the Bloch sphere to test our experiment, and the fidelity of the quantum state transfer is $91.8pm1.3%$.
Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action with applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In this endeavor, here we demonstrate the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.
Hybrid entangled states exhibit entanglement between different degrees of freedom of a particle pair and thus could be useful for asymmetric optical quantum network where the communication channels are characterized by different properties. We report the first experimental realization of hybrid polarization-orbital angular momentum (OAM) entangled states by adopting a spontaneous parametric down conversion source of polarization entangled states and a polarization-OAM transferrer. The generated quantum states have been characterized through quantum state tomography. Finally, the violation of Bells inequalities with the hybrid two photon system has been observed.
We present a linear-optical implementation of a class of two-qubit partial SWAP gates for polarization states of photons. Different gate operations, including the SWAP and entangling square root of SWAP, can be obtained by changing a classical control parameter -- namely the path difference in the interferometer. Reconstruction of output states, full process tomography and evaluation of entanglement of formation prove very good performance of the gates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا