Do you want to publish a course? Click here

Generation of hybrid polarization-orbital angular momentum entangled states

235   0   0.0 ( 0 )
 Added by Fabio Sciarrino
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid entangled states exhibit entanglement between different degrees of freedom of a particle pair and thus could be useful for asymmetric optical quantum network where the communication channels are characterized by different properties. We report the first experimental realization of hybrid polarization-orbital angular momentum (OAM) entangled states by adopting a spontaneous parametric down conversion source of polarization entangled states and a polarization-OAM transferrer. The generated quantum states have been characterized through quantum state tomography. Finally, the violation of Bells inequalities with the hybrid two photon system has been observed.



rate research

Read More

So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglement in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
The orbital angular momentum of light (OAM) provides a promising approach for the implementation of multidimensional states (qudits) for quantum information purposes. In order to characterize the degradation undergone by the information content of qubits encoded in a bidimensional subspace of the orbital angular momentum degree of freedom of photons, we study how the state fidelity is affected by a transverse obstruction placed along the propagation direction of the light beam. Emphasis is placed on the effects of planar and radial hard-edged aperture functions on the state fidelity of Laguerre-Gaussian transverse modes and the entanglement properties of polarization-OAM hybrid-entangled photon pairs.
Entanglement distribution between distant parties is one of the most important and challenging tasks in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental building block towards quantum networks. Among the different degrees of freedom, orbital angular momentum (OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states. In this article, we experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs. To this end, we exploit a recently developed air-core fiber which supports OAM modes. High fidelity distribution of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM Hilbert space after fiber propagation, and by violations of Bell inequalities and multipartite entanglement tests. The present results open new scenarios for quantum applications where correlated complex states can be transmitted by exploiting the vectorial nature of light.
Phase manipulation is essential to quantum information processing, for which the orbital angular momentum (OAM) of photon is a promising high-dimensional resource. Dove prism (DP) is one of the most important element to realize the nondestructive phase manipulation of OAM photons. DP usually changes the polarization of light and thus increases the manipulation error for a spin-OAM hybrid state. DP in a Sagnac interferometer also introduces a mode-dependent global phase to the OAM mode. In this work, we implemented a high-dimensional controlled-phase manipulation module (PMM), which can compensate the mode-dependent global phase and thus preserve the phase in the spin-OAM hybrid superposition state. The PMM is stable for free running and is suitable to realize the high-dimensional controlled-phase gate for spin-OAM hybrid states. Considering the Sagnac-based structure, the PMM is also suitable for classical communication with spin-OAM hybrid light field.
We address the possibility of using even/odd states of orbital angular momentum (OAM) of photons for the quantum information tasks. Single photon qubit states and two photon entangled states in even/odd basis of OAM are considered. We present a method for the tomography and general projective measurement in even/odd basis. With the general projective measurement, we show the Bell violation and quantum cryptography with Bells inequality. We also describe hyper and hybrid entanglement of even/odd OAM states along with polarization, which can be applied in the implementation of quantum protocols like super dense coding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا