Do you want to publish a course? Click here

Measurements of Non-Singlet Moments of the Nucleon Structure Functions and Comparison to Predictions from Lattice QCD for $Q^2 = 4$ $rm GeV^2$

208   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present extractions of the nucleon non-singlet moments utilizing new precision data on the deuteron $F_2$ structure function at large Bjorken-$x$ determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world data sets on the proton and deuteron at lower $x$ measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the $x$ range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high $x$ data. Moreover, recent exciting developments in Lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach which first calculates the quark distributions directly before determining moments.



rate research

Read More

127 - Y. Prok , P. Bosted , V.D. Burkert 2009
The spin structure functions g_1 for the proton and the deuteron have been measured over a wide kinematic range in x and Q2 using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH_3 and ND_3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 < Q^2 < 5 GeV^2 and W < 3 GeV. The first moments of g_1 for the proton and deuteron are presented -- both have a negative slope at low Q^2, as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first result for the generalized forward spin polarizability of the proton gamma_0^p is also reported. This quantity shows strong Q^2 dependence at low Q^2, while Q^6gamma_0^p seems to flatten out at the highest Q^2 accessed by our experiment. Although the first moments of g_1 are consistent with Chiral Perturbation Theory (ChPT) calculations up to approximately Q^2 = 0.06 GeV^2, a significant discrepancy is observed between the gamma_0^p data and ChPT for gamma_0^p, even at the lowest Q2.
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleons quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.
We present results on the isovector momentum fraction, $langle x rangle_{u-d}$, helicity moment, $langle x rangle_{Delta u-Delta d}$, and the transversity moment, $langle x rangle_{delta u-delta d}$, of the nucleon obtained using nine ensembles of gauge configurations generated by the MILC collaboration using $2+1+1$-flavors of dynamical highly improved staggered quarks (HISQ). The correlation functions are calculated using the Wilson-Clover action and the renormalization of the three operators is carried out nonperturbatively on the lattice in the RI${}^prime$-MOM scheme. The data have been collected at lattice spacings $a approx 0.15, 0.12, 0.09,$ and 0.06 fm and $M_pi approx 310, 220$ and 135 MeV, which are used to obtain the physical values using a simultaneous chiral-continuum-finite-volume fit. The final results, in the $overline{MS}$ scheme at 2 GeV, are $langle x rangle_{u-d} = 0.173(14)(07)$, $langle x rangle_{Delta u-Delta d} = 0.213(15)(22)$ and $langle x rangle_{delta u-delta d} = 0.208(19)(24)$, where the first error is the overall analysis uncertainty and the second is an additional systematic uncertainty due to possible residual excited-state contributions. These results are consistent with other recent lattice calculations and phenomenological global fit values.
We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle <theta_lab>=6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.
We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contribution to the neutron $d_2$ matrix element, was found to be small at $<Q^2>$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا