No Arabic abstract
We classify four-dimensional shrinking Ricci solitons satisfying $Sec geq frac{1}{24} R$, where $Sec$ and $R$ denote the sectional and the scalar curvature, respectively. They are isometric to either $mathbb{R}^{4}$ (and quotients), $mathbb{S}^{4}$, $mathbb{RP}^{4}$ or $mathbb{CP}^{2}$ with their standard metrics.
Let $(M, g, f)$ be a $4$-dimensional complete noncompact gradient shrinking Ricci soliton with the equation $Ric+ abla^2f=lambda g$, where $lambda$ is a positive real number. We prove that if $M$ has constant scalar curvature $S=2lambda$, it must be a quotient of $mathbb{S}^2times mathbb{R}^2$. Together with the known results, this implies that a $4$-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton $Bbb{R}^4$, $Bbb{S}^{2}timesBbb{R}^{2}$ or $Bbb{S}^{3}timesBbb{R}$.
In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton $Bbb{R}^4,$ or $Bbb{S}^{3}timesBbb{R}$, or $Bbb{S}^{2}timesBbb{R}^{2}.$ In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
We prove that Ricci flows with almost maximal extinction time must be nearly round, provided that they have positive isotropic curvature when crossed with $mathbb{R}^{2}$. As an application, we show that positively curved metrics on $S^{3}$ and $RP^{3}$ with almost maximal width must be nearly round.
In this paper, we study constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. First, we show that a constant weighted mean curvature hypersurface with finite weighted volume cannot lie in a region determined by a special level set of the potential function, unless it is the level set. Next, we show that a compact constant weighted mean curvature hypersurface with a certain upper bound or lower bound on the mean curvature is a level set of the potential function. We can apply both results to the cylinder shrinking Ricci soliton ambient space. Finally, we show that a constant weighted mean curvature hypersurface in the Gaussian shrinking Ricci soliton (not necessarily properly immersed) with a certain assumption on the integral of the second fundamental form must be a generalized cylinder.
Positively curved Alexandrov spaces of dimension 4 with an isometric circle action are classified up to equivariant homeomorphism, subject to a certain additional condition on the infinitesimal geometry near fixed points which we conjecture is always satisfied. As a corollary, positively curved Riemannian orbifolds of dimension 4 with an isometric circle action are also classified.