Do you want to publish a course? Click here

Positively curved Alexandrov spaces with circle symmetry in dimension 4

91   0   0.0 ( 0 )
 Added by Catherine Searle
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Positively curved Alexandrov spaces of dimension 4 with an isometric circle action are classified up to equivariant homeomorphism, subject to a certain additional condition on the infinitesimal geometry near fixed points which we conjecture is always satisfied. As a corollary, positively curved Riemannian orbifolds of dimension 4 with an isometric circle action are also classified.



rate research

Read More

96 - Giovanni Catino 2018
We classify four-dimensional shrinking Ricci solitons satisfying $Sec geq frac{1}{24} R$, where $Sec$ and $R$ denote the sectional and the scalar curvature, respectively. They are isometric to either $mathbb{R}^{4}$ (and quotients), $mathbb{S}^{4}$, $mathbb{RP}^{4}$ or $mathbb{CP}^{2}$ with their standard metrics.
We prove that if a closed, smooth, simply-connected 4-manifold with a circle action admits an almost non-negatively curved sequence of invariant Riemannian metrics, then it also admits a non-negatively curved Riemannian metric invariant with respect to the same action. The same is shown for torus actions of higher rank, giving a classification of closed, smooth, simply-connected 4-manifolds of almost non-negative curvature under the assumption of torus symmetry.
88 - Jian Ge , Nan Li 2020
In this paper we discuss the sufficient and necessary conditions for multiple Alexandrov spaces being glued to an Alexandrov space. We propose a Gluing Conjecture, which says that the finite gluing of Alexandrov spaces is an Alexandrov space, if and only if the gluing is by path isometry along the boundaries and the tangent cones are glued to Alexandrov spaces. This generalizes Petrunins Gluing Theorem. Under the assumptions of the Gluing Conjecture, we classify the $2$-point gluing over $(n-1,epsilon)$-regular points as local separable gluing and the gluing near un-glued $(n-1,epsilon)$-regular points as local involutional gluing. We also prove that the Gluing Conjecture is true if the complement of $(n-1,epsilon)$-regular points is discrete in the glued boundary. In particular, this implies the general Gluing Conjecture as well as a new Gluing Theorem in dimension 2.
138 - Jian Ge 2020
In this note, we estimate the upper bound of volume of closed positively or nonnegatively curved Alexandrov space $X$ with strictly convex boundary. We also discuss the equality case. In particular, the Boundary Conjecture holds when the volume upper bound is achieved. Our theorem also can be applied to Riemannian manifolds with non-smooth boundary, which generalizes Heintze and Karchers classical volume comparison theorem. Our main tool is the gradient flow of semi-concave functions.
In this paper, we establish a Bochner type formula on Alexandrov spaces with Ricci curvature bounded below. Yaus gradient estimate for harmonic functions is also obtained on Alexandrov spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا