Do you want to publish a course? Click here

QoS management mechanisms for Enhanced Living Environments in IoT

349   0   0.0 ( 0 )
 Added by Clovis Ouedraogo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The Internet of Things (IoT) paradigm is expected to bring ubiquitous intelligence through new applications in order to enhance living and other environments. Several research and standardization studies are now focused on the Middleware level of the underlying communication system. For this level, several challenges need to be considered, among them the Quality of Service (QoS) issue. The Autonomic Computing paradigm is now recognized as a promising approach to help communication and other systems to self-adapt when the context is changing. With the aim to promote the vision of an autonomic Middleware-level QoS management for IoT-based systems, this paper proposes a set of QoS-oriented mechanisms that can be dynamically executed at the Middleware level to correct QoS degradation. The benefits of the proposed mechanisms are also illustrated for a concrete case of Enhanced Living Environment.



rate research

Read More

In the recent years, telecom and computer networks have witnessed new concepts and technologies through Network Function Virtualization (NFV) and Software-Defined Networking (SDN). SDN, which allows applications to have a control over the network, and NFV, which allows deploying network functions in virtualized environments, are two paradigms that are increasingly used for the Internet of Things (IoT). This Internet (IoT) brings the promise to interconnect billions of devices in the next few years rises several scientific challenges in particular those of the satisfaction of the quality of service (QoS) required by the IoT applications. In order to address this problem, we have identified two bottlenecks with respect to the QoS: the traversed networks and the intermediate entities that allows the application to interact with the IoT devices. In this paper, we first present an innovative vision of a network function with respect to their deployment and runtime environment. Then, we describe our general approach of a solution that consists in the dynamic, autonomous, and seamless deployment of QoS management mechanisms. We also describe the requirements for the implementation of such approach. Finally, we present a redirection mechanism, implemented as a network function, allowing the seamless control of the data path of a given middleware traffic. This mechanism is assessed through a use case related to vehicular transportation.
Cloud applications are increasingly shifting from large monolithic services, to large numbers of loosely-coupled, specialized microservices. Despite their advantages in terms of facilitating development, deployment, modularity, and isolation, microservices complicate resource management, as dependencies between them introduce backpressure effects and cascading QoS violations. We present Sinan, a data-driven cluster manager for interactive cloud microservices that is online and QoS-aware. Sinan leverages a set of scalable and validated machine learning models to determine the performance impact of dependencies between microservices, and allocate appropriate resources per tier in a way that preserves the end-to-end tail latency target. We evaluate Sinan both on dedicated local clusters and large-scale deployments on Google Compute Engine (GCE) across representative end-to-end applications built with microservices, such as social networks and hotel reservation sites. We show that Sinan always meets QoS, while also maintaining cluster utilization high, in contrast to prior work which leads to unpredictable performance or sacrifices resource efficiency. Furthermore, the techniques in Sinan are explainable, meaning that cloud operators can yield insights from the ML models on how to better deploy and design their applications to reduce unpredictable performance.
Predictive analytics in Mobile Edge Computing (MEC) based Internet of Things (IoT) is becoming a high demand in many real-world applications. A prediction problem in an MEC-based IoT environment typically corresponds to a collection of tasks with each task solved in a specific MEC environment based on the data accumulated locally, which can be regarded as a Multi-task Learning (MTL) problem. However, the heterogeneity of the data (non-IIDness) accumulated across different MEC environments challenges the application of general MTL techniques in such a setting. Federated MTL (FMTL) has recently emerged as an attempt to address this issue. Besides FMTL, there exists another powerful but under-exploited distributed machine learning technique, called Network Lasso (NL), which is inherently related to FMTL but has its own unique features. In this paper, we made an in-depth evaluation and comparison of these two techniques on three distinct IoT datasets representing real-world application scenarios. Experimental results revealed that NL outperformed FMTL in MEC-based IoT environments in terms of both accuracy and computational efficiency.
We introduce a system for Autonomic Management of Power Consumption in setups that involve Internet of Things (IoT) and Fog Computing. The Central IoT (CIoT) is a Fog Computing based solution to provide advanced orchestration mechanisms to manage dynamic duty cycles for extra energy savings. The solution works by adjusting Home (H) and Away (A) cycles based on contextual information, like environmental conditions, user behavior, behavior variation, regulations on energy and network resources utilization, among others. Performance analysis through a proof of concept present average energy savings of 58.4%, reaching up to 61.51% when augmenting with a scheduling system and variable long sleep cycles (LS). However, there is no linear relation increasing LS time and more savings. The significance of this research is to promote autonomic management as a solution to develop more energy efficient buildings and smarter cities, towards sustainable goals.
Many IoT systems are data intensive and are for the purpose of monitoring for fault detection and diagnosis of critical systems. A large volume of data steadily come out of a large number of sensors in the monitoring system. Thus, we need to consider how to store and manage these data. Existing time series databases (TSDBs) can be used for monitoring data storage, but they do not have good models for describing the data streams stored in the database. In this paper, we develop a semantic model for the specification of the monitoring data streams (time series data) in terms of which sensor generated the data stream, which metric of which entity the sensor is monitoring, what is the relation of the entity to other entities in the system, which measurement unit is used for the data stream, etc. We have also developed a tool suite, SE-TSDB, that can run on top of existing TSDBs to help establish semantic specifications for data streams and enable semantic-based data retrievals. With our semantic model for monitoring data and our SE-TSDB tool suite, users can retrieve non-existing data streams that can be automatically derived from the semantics. Users can also retrieve data streams without knowing where they are. Semantic based retrieval is especially important in a large-scale integrated IoT-Edge-Cloud system, because of its sheer quantity of data, its huge number of computing and IoT devices that may store the data, and the dynamics in data migration and evolution. With better data semantics, data streams can be more effectively tracked and flexibly retrieved to help with timely data analysis and control decision making anywhere and anytime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا