Do you want to publish a course? Click here

Control of helicity of high-harmonic radiation using bichromatic circularly polarized laser fields

101   0   0.0 ( 0 )
 Added by Gopal Dixit dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-harmonic generation in two-colour ($omega-2omega$) counter-rotating circularly polarised laser fields opens the path to generate isolated attosecond pulses and attosecond pulse trains with controlled ellipticity. The generated harmonics have alternating helicity, and the ellipticity of the generated attosecond pulse depends sensitively on the relative intensities of two adjacent, counter-rotating harmonic lines. For the $s$-type ground state, such as in Helium, the successive harmonics have nearly equal amplitude, yielding isolated attosecond pulses and attosecond pulse trains with linear polarisation, rotated by 120$^{{circ}}$ from pulse to pulse. In this work, we suggest a solution to overcome the limitation associated with the $s$-type ground state. It is based on modifying the three propensity rules associated with the three steps of the harmonic generation process: ionisation, propagation, and recombination. We control the first step by seeding high harmonic generation with XUV light tuned well below the ionisation threshold, which generates virtual excitations with the angular momentum co-rotating with the $omega$-field. We control the propagation step by increasing the intensity of the $omega$-field relative to the $2omega$-field, further enhancing the chance of the $omega$-field being absorbed versus the $2omega$-field, thus favouring the emission co-rotating with the seed and the $omega-$field. We demonstrate our proposed control scheme using Helium atom as a target and solving time-dependent Schr{o}dinger equation in two and three-dimensions.



rate research

Read More

We investigate the polarization properties of high harmonics generated with the bichromatic counterrotating circularly polarized (BCCP) laser fields by numerically solving time-dependent Schrodinger equation (TDSE). It is found that, the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity
123 - Ofer Kfir 2017
This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the unique coherence of high harmonics, this approach will facilitate quantitative, element-specific and spatially-resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.
We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side-facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an anti-parallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
We present a numerical study of the resonant high harmonic generation by tin ions in an elliptically-polarised laser field along with a simple analytical model revealing the mechanism and main features of this process. We show that the yield of the resonant harmonics behaves anomalously with the fundamental field ellipticity, namely the drop of the resonant harmonic intensity with the fundamental ellipticity is much slower than for high harmonics generated through the nonresonant mechanism. Moreover, we study the polarisation properties of high harmonics generated in elliptically-polarised field and show that the ellipticity of harmonics near the resonance is significantly higher than for ones far off the resonance. This introduces a prospective way to create a source of the quasi-monochromatic coherent XUV with controllable ellipticity potentially up to circular.
We numerically demonstrate that a planar slab made of magnetic Weyl semimetal (a class of topological materials) can emit high-purity circularly polarized (CP) thermal radiation over a broad mid- and long-wave infrared wavelength range for a significant portion of its emission solid angle. This effect fundamentally arises from the strong infrared gyrotropy or nonreciprocity of these materials which primarily depends on the momentum separation between Weyl nodes in the band structure. We clarify the dependence of this effect on the underlying physical parameters and highlight that the spectral bandwidth of CP thermal emission increases with increasing momentum separation between the Weyl nodes. We also demonstrate using recently developed thermal discrete dipole approximation (TDDA) computational method that finite-size bodies of magnetic Weyl semimetals can emit spectrally broadband CP thermal light, albeit over smaller portion of the emission solid angle compared to the planar slabs. Our work identifies unique fundamental and technological prospects of magnetic Weyl semimetals for engineering thermal radiation and designing efficient CP light sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا