No Arabic abstract
On 2017 September 22 the IceCube neutrino observatory detected a track-like, very-high-energy event (IceCube-170922A) that is spatially associated with TXS 0506+056, a quasar at a redshift of $z=0.3365$. This source is characterized by the increased acitivies in a very wide energy range (from radio to TeV) during these days. To investigate the possible connection of the PeV neutrino emission with the GeV activity of blazars, in this work we select 116 bright sources and analyze their lightcurves and spectra. We focus on the sources displaying GeV activities. Among these blazars, TXS 0506+056 seems to be typical in many aspects but is distinguished by the very strong GeV activties. We suggest to search for neutrino outburst in the historical data of IceCube, as recently done for TXS 0506+056, from the directions of these more energetic and harder blazars with strong GeV activities.
We present evidence that TXS 0506+056, the first plausible non-stellar neutrino source, despite appearances, is not a blazar of the BL Lac type but is instead a masquerading BL Lac, i.e., intrinsically a flat-spectrum radio quasar with hidden broad lines and a standard accretion disk. This re-classification is based on: (1) its radio and O II luminosities; (2) its emission line ratios; (3) its Eddington ratio. We also point out that the synchrotron peak frequency of TXS 0506+056 is more than two orders of magnitude larger than expected by the so-called blazar sequence, a scenario which has been assumed by some theoretical models predicting neutrino (and cosmic-ray) emission from blazars. Finally, we comment on the theoretical implications this re-classification has on the location of the $gamma$-ray emitting region and our understanding of neutrino emission in blazars.
The IceCube instrument detected a high-energy cosmic neutrino event on 2017 September 22 (IceCube_170922A, IceCube Collaboration 2018), which the electromagnetic follow-up campaigns associated with the flaring $gamma$-ray blazar TXS 0506$+$056 (e.g., Padovani et al., 2018). We investigated the mid-infrared variability of the source by using the available single exposure data of the WISE satellite at $3.4$ and $4.6mu$m. TXS 0506$+$056 experienced a $sim 30$% brightening in both of these bands a few days prior to the neutrino event. Additional intraday infrared variability can be detected in 2010. Similar behaviour seen previously in $gamma$-ray bright radio-loud AGN has been explained by their jet emission (e.g., Jiang et al. 2012).
While blazars have long been one of the candidates in the search for the origin of ultra-high energy cosmic rays and astrophysical neutrinos, the BL Lac object TXS 0506+056 is the first extragalactic source that is correlated with some confidence with a high-energy neutrino event recorded with IceCube. At the time of the IceCube event, the source was found in a high state in gamma-rays with Fermi-LAT and MAGIC. We have explored in detail the parameter space of a lepto-hadronic radiative model, assuming a single emitting region inside the relativistic jet. We present the complete range of possible solutions for the physical conditions of the emitting region and its particle population. For each solution we compute the expected neutrino rate, and discuss the impact of this event on our general understanding of emission processes in blazars.
For the first time since the discovery of high-energy cosmic neutrinos by IceCube, a multimessenger campaign identified a distant gamma ray blazar, TXS 0506+056, as the source of a high-energy neutrino. The extraordinary brightness of the blazar despite its distance suggests that it may belong to a special class of sources that produce cosmic rays. Moreover, over the last 10 years of data, the high-energy neutrino flux from the source is dominated by a previous neutrino flare in 2014, which implies that flaring sources strongly contribute to the cosmic ray flux. We investigate the contribution of this subclass of flaring blazars to the high-energy neutrino flux and examine its connection to the very high energy cosmic ray observations. We also study the high energy gamma ray emission accompanying the neutrino flare and show that the sources must be more efficient neutrino than gamma ray emitters. This conclusion is supported by the gamma-ray observations during the 2014 neutrino flare.
TXS 0506+056 is a blazar that has been recently identified as the counterpart of the neutrino event IceCube-170922A. Understanding blazar type of TXS 0506+056 is important to constrain the neutrino emission mechanism, but the blazar nature of TXS 0506+056 is still uncertain. As an attempt to understand the nature of TXS 0506+056, we report the medium-band observation results of TXS 0506+056, covering the wavelength range of 0.575 to 1.025 $mu$m. The use of the medium-band filters allow us to examine if there were any significant changes in its spectral shapes over the course of one month and give a better constraint on the peak frequency of synchrotron radiation with quasi-simultaneous datasets. The peak frequency is found to be $10^{14.28}$ Hz, and our analysis shows that TXS 0506+056 is not an outlier from the blazar sequence. As a way to determine the blazar type, we also analyzed if TXS 0506+056 is bluer-when-brighter (BL Lac type and some flat spectrum radio quasars, FSRQs) or redder-when-brighter (found only in some FSRQs). Even though we detect no significant variability in the spectral shape larger than observational error during our medium-band observation period, the comparison with a dataset taken at 2012 shows a possible redder-when-brighter behavior of FSRQs. Our results demonstrate that medium-band observations with small to moderate-sized telescopes can be an effective way to trace the spectral evolution of transients such as TXS 0506+056.