Do you want to publish a course? Click here

Measuring supermassive black hole peculiar motion using H$_2$O megamasers

243   0   0.0 ( 0 )
 Added by Dominic Pesce
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

H$_2$O megamasers residing in the accretion disks of active galactic nuclei (AGN) exhibit Keplerian rotation about the central supermassive black hole (SMBH). Such disk maser systems are excellent tools for diagnosing the kinematic status of the SMBH, and they currently provide the only direct and unambiguous measure of SMBH velocities outside of the Milky Way. We have measured the galaxy recession velocities for a sample of 10 maser disk systems using a combination of spatially resolved HI disk modeling, spatially integrated HI profile fitting, and optical spectral line and continuum fitting. In comparing the SMBH velocities to those of their host galaxies, we find two (out of 10) systems -- J0437+2456 and NGC 6264 -- for which the SMBH and galaxy velocities show a statistically significant ($>$3$sigma$) difference. For NGC 6264 the apparent velocity offset can likely be explained by ionized gas motion within the host galaxy (e.g., from AGN-driven shocks). The velocity measurements for J0437+2456, however, imply a SMBH peculiar velocity of $69.6 pm 12.7$ km s$^{-1}$ (5.5$sigma$). We thus consider J0437+2456 to be a promising candidate for hosting either a recoiling or binary SMBH, though additional observations are necessary to exclude the possibility of a systematic offset between the galactic recession velocity and that measured using the optical spectrum.



rate research

Read More

We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at $-$409 and $-$562 km/s (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100$-$4156 could be explained by a ~50 pc molecular ring enclosing an approximately 3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAPs BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a twenty-six year period. The flux density of the brightest OH maser components has reduced by more than a factor of two between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution VLBI follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science program.
Spin measurements of supermassive black holes (SMBHs) provide crucial constraints on the accretion processes that power active galactic nuclei (AGN), fuel outflows, and trigger black hole growth. However, spin measurements are mainly limited to a few dozen nearby sources for which high quality, high S/N spectra (e.g., from Chandra, XMM-Newton, Suzaku, NuSTAR) are available. Here we measure the average SMBH spin of $sim$1900 AGN in the Chandra COSMOS-Legacy survey using spectral stacking analysis. We find broad Fe K$alpha$ line emission in the average COSMOS spectrum (Gaussian width $sigma=0.27pm0.05$ keV), and by fitting this emission line profile with relativistic line models, we measure the average black hole spin parameter $a=0.62~substack{+0.07 -0.17}$. The sample size, availability of multiwavelength data, and spatial resolution of the COSMOS Legacy field also provide a unique environment to investigate the average SMBH spin as a function of other observables (e.g., redshift, luminosity) up to $zsim5.3$. We find that optically classified Type 1 sources have broader Fe K$alpha$ line emission than Type 2 sources. X-ray unobscured and obscured sources, as defined by their column densities, have widths that are consistent with the optically defined unobscured and obscured sources, respectively. There is some evidence for evolution of the Fe K$alpha$ width and black hole spin parameter with luminosity, but not conclusively with redshift. The results of this work provide insights into the average spins of SMBHs in AGN, shedding light on their growth mechanisms and observed co-evolution with their host galaxies.
The next generation of giant-segmented mirror telescopes ($>$ 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from $Z$ band (0.9 $mu$m) to $K$ band (2.2 $mu$m). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of $sim10^4$ msun to the most massive black holes known today of $>10^{10}$ $M_odot$. We find that IRIS will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of $sim8000$ will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in SDSS DR7, we find that over $10^5$ massive black holes will be observable at distances between $0.005 < z < 0.18$ with the estimated sensitivity and angular resolution provided by access to $Z$-band (0.9 $mu$m) spectroscopy from IRIS and the TMT adaptive optics system. (Abridged)
Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.
206 - Laura Brenneman 2013
Measuring the spins of supermassive black holes (SMBHs) in active galactic nuclei (AGN) can inform us about the relative role of gas accretion vs. mergers in recent epochs of the life of the host galaxy and its AGN. Recent advances in theory and observation have enabled spin measurements for a handful of SMBHs thus far, but this science is still very much in its infancy. Herein, I discuss how and why we seek to measure black hole spin in AGN, using recent results from long X-ray observing campaigns on three radio-quiet AGN (MCG-6-30-15, NGC 3783 and Fairall 9) to illustrate this process and its caveats. I then present our current knowledge of the distribution of SMBH spins in the local universe. I also address prospects for improving the accuracy, precision and quantity of these spin constraints in the next decade and beyond with instruments such as NuSTAR, Astro-H and a future generation large-area X-ray telescope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا