Do you want to publish a course? Click here

Gravitational lensing detection of an extremely dense environment around a galaxy cluster

71   0   0.0 ( 0 )
 Added by Mauro Sereno
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy clusters form at the highest density nodes of the cosmic web. The clustering of massive halos is enhanced relative to the general mass distribution and matter beyond the virial region is strongly correlated to the halo mass (halo bias). Clustering can be further enhanced depending on halo properties other than mass (secondary bias). The questions of how much and why the regions surrounding rich clusters are over-dense are still unanswered. Here, we report the analysis of the environment bias in a sample of very massive clusters, selected through the Sunyaev-Zeldovich effect by the Planck mission. We present the first detection of the correlated dark matter associated to a single cluster, PSZ2 G099.86+58.45. The system is extremely rare in the current paradigm of structure formation. The gravitational lensing signal was traced up to 30 megaparsecs with high signal-to-noise ratio ~3.4. The measured shear is very large and points at environment matter density in notable excess of the cosmological mean. The boosting of the correlated dark matter density around high mass halos can be very effective. Together with ensemble studies of the large scale structure, lensing surveys can picture the surroundings of single haloes.



rate research

Read More

We use dense redshift surveys of nine galaxy clusters at $zsim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{rm cl}<z<2z_{rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
158 - Keiichi Umetsu 2010
Weak gravitational lensing of background galaxies is a unique, direct probe of the distribution of matter in clusters of galaxies. We review several important aspects of cluster weak gravitational lensing together with recent advances in weak lensing techniques for measuring cluster lensing profiles and constraining cluster structure parameters.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
Observations of relaxed, massive and distant clusters can provide important tests of standard cosmological models e.g. using the gas mass fraction. We study the very luminous, high redshift ($z=0.902$) galaxy cluster ClJ120958.9+495352 using XMM-Newton data and measure the temperature profile and cooling time to investigate the dynamical status with respect to the presence of a cool core as well as global cluster properties. We use HST weak lensing data to estimate its total mass and determine the gas mass fraction. We perform a spectral analysis using an XMM-Newton observation of 15ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point-spread-function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. The X-ray luminosity of ClJ120958.9+495352 in the 0.1-2.4keV band estimated from our XMM-Newton data is $L_X = (13.4_{-1.0}^{+1.2})times10^{44}$erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis we estimate a cluster mass of $M_mathrm{500}/10^{14}M_odot=4.4^{+2.2}_{-2.0}(mathrm{stat.})pm0.6(mathrm{sys.})$ and a gas mass fraction of $f_mathrm{gas,2500} = 0.11_{-0.03}^{+0.06}$ in good agreement with previous findings for high redshift and local clusters.
In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition. In the other case, the model parameters are estimated using a Bayesian MCMC optimization implemented in the lensing software Lenstool. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with MCMC to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal to noise reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. 2012. We conclude that sensitive priors can help to get high signal to noise, and unbiased reconstructions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا