Do you want to publish a course? Click here

The three- and four-Higgs couplings in the general two-Higgs-doublet model

75   0   0.0 ( 0 )
 Added by Darius Jurciukonis
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We apply the unitarity bounds and the bounded-from-below (BFB) bounds to the most general scalar potential of the two-Higgs-doublet model (2HDM). We do this in the Higgs basis, i.e. in the basis for the scalar doublets where only one doublet has vacuum expectation value. In this way we obtain bounds on the scalar masses and couplings that are valid for all 2HDMs. We compare those bounds to the analogous bounds that we have obtained for other simple extensions of the Standard Model (SM), namely the 2HDM extended by one scalar singlet and the extension of the SM through two scalar singlets.



rate research

Read More

193 - Per Osland 2008
We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrizations. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.
133 - M. Maniatis , O. Nachtmann 2014
Stability, electroweak symmetry breaking, and the stationarity equations of the general three-Higgs-doublet model (3HDM) where all doublets carry the same hypercharge are discussed in detail. Employing the bilinear formalism the study of the 3HDM potential turns out to be straightforward. For the case that the potential leads to the physically relevant electroweak symmetry breaking we present explicit formulae for the masses of the physical Higgs bosons.
157 - M.Dubinin , A.Semenov 1998
In the case of minimal supersymmetric extension of the Standard Model (MSSM), when the pseudoscalar Higgs boson mass is less than the supersymmetry energy scale, the effective theory at the electroweak scale is a two-Higgs-doublet model. We diagonalize the mass matrix of the general two-Higgs-doublet model, expressing Higgs boson self-couplings in terms of two mixing angles and four Higgs boson masses, and derive in a compact form the complete set of Feynman rules, including quartic couplings in the Higgs sector, for the case of CP-violating potential. Some processes of double and triple Higgs boson production at a high-energy linear collider are calculated in the case of mixing angles and scalar boson masses satisfying the MSSM constraints.
Motivated by an anomaly in $R(D^{(*)})={rm BR}(bar{B}rightarrow D^{(*)} tau^-bar{ u})/{rm BR}(bar{B}rightarrow D^{(*)} l^-bar{ u})$ reported by BaBar, Belle and LHCb, we study $R(D^{(*)})$ in a general two Higgs doublet model (2HDM). Although it has been suggested that it is difficult for the 2HDM to explain the current world average for $R(D^{(*)})$, it would be important to clarify how large deviations from the standard model predictions for $R(D^{(*)})$ are possible in the 2HDM. We investigate possible corrections to $R(D^{(*)})$ in the 2HDM by taking into account various flavor physics constraints (such as $B_c^-rightarrow tau^- bar{ u}$, $brightarrow sgamma$, $brightarrow s l^+l^-$, $Delta m_{B_{d,s}}$, $B_srightarrow mu^+mu^-$ and $tau^+tau^-$, and $B^-rightarrow tau^- bar{ u}$), and find that it would be possible (impossible) to accommodate the 1$sigma$ region suggested by the Belles result when we adopt a constraint ${rm BR}(B_c^-rightarrow tau^- bar{ u})le30~%$ (${rm BR}(B_c^-rightarrow tau^- bar{ u})le10~%$). We also study productions and decays of heavy neutral and charged Higgs bosons at the Large Hadron Collider (LHC) experiment and discuss the constraints and implications at the LHC. We show that in addition to well-studied production modes $bgrightarrow tH^-$ and $ggrightarrow H/A$, exotic productions of heavy Higgs bosons such as $cgrightarrow bH^+,t+H/A$ and $cbar{b}rightarrow H^+$ would be significantly large, and the search for their exotic decay modes such as $H/Arightarrow tbar{c}+cbar{t},~mu^pmtau^mp$ and $H^+rightarrow cbar{b}$ as well as $H/Arightarrow tau^+tau^-$ and $H^+rightarrow tau^+ u$ would be important to probe the interesting parameter regions for $R(D^{(*)})$.
175 - Syuhei Iguro , Yuji Omura 2019
In this paper, we study the CP violating processes in a general two-Higgs-doublet model (2HDM) with tree-level flavor changing neutral currents. In this model, sizable Yukawa couplings involving top and charm quarks are still allowed by the collider and flavor experiments, while the other couplings are strongly constrained experimentally. The sizable couplings, in general, have imaginary parts and could largely contribute to the CP violating observables concerned with the $B$ and $K$ mesons. In particular, the contribution may be so large that it affects the direct CP violating $K$ meson decay, where the discrepancy between the experimental result and the Standard Model prediction is reported. We discuss how well the anomaly is resolved in the 2HDM, based on study of the other flavor observables. We also propose the way to test our 2HDM at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا