Do you want to publish a course? Click here

Physical properties of noncentrosymmetric tungsten and molybdenum aluminides

63   0   0.0 ( 0 )
 Added by Darren Peets
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A lack of spatial inversion symmetry gives rise to a variety of unconventional physics, from noncollinear order and Skyrmion lattice phases in magnetic materials to topologically-protected surface states in certain band insulators, to mixed-parity pairing states in superconductors. The search for exotic physics in such materials is largely limited by a lack of candidate materials, and often by difficulty in obtaining crystals. Here, we report the single crystal growth and physical properties of the noncentrosymmetric tungsten aluminide cage compounds Al$_4$W and Al$_5$W, alongside related molybdenum aluminides in which spin-orbit coupling should be significantly weaker. All compounds are nonmagnetic metals. Their high conductivities suggest the opportunity to find superconductivity at lower temperatures, while the limits we can place on their transition temperatures suggest that any superconductivity may be expected to exhibit significant parity mixing.



rate research

Read More

129 - Lei Fang , Huan Yang , Xiyu Zhu 2008
Transition metal boride Ru$_7$B$_3$ was found to be a noncentrosymmetric superconductor with $T_{C}$ equal to 3.3 K. Superconducting and normal state properties of Ru$_7$B$_3$ were determined by a self-consistent analysis through resistivity($rho_{xx}$ and $rho_{xy}$), specific heat, lower critical field measurement and electronic band structure calculation. It is found that Ru$_7$B$_3$ belongs to an s-wave dominated single band superconductor with energy gap 0.5 meV and could be categorized into type II superconductor with weak electron-phonon coupling. Unusual kink feature is clearly observed in field-broadening resistivity curves, suggesting the possible mixture of spin triplet induced by the lattice without inversion symmetry.
The magnetic and transport properties of Fe-deficient Fe5GeTe2 single crystals (Fe5-xGeTe2 with x~0.3) were studied and the impact of thermal processing was explored. Quenching crystals from the growth temperature has been previously shown to produce a metastable state that undergoes a strongly hysteretic first-order transition upon cooling below ~100K. The first-order transition impacts the magnetic properties, yielding an enhancement in the Curie temperature T_C from 270 to 310K. In the present work, T_HT ~550K has been identified as the temperature above which metastable crystals are obtained via quenching. Diffraction experiments reveal a structural change at this temperature, and significant stacking disorder occurs when samples are slowly cooled through this temperature range. The transport properties are demonstrated to be similar regardless of the crystals thermal history. The scattering of charge carriers appears to be dominated by moments fluctuating on the Fe(1) sublattice, which remain dynamic down to 100-120K. Maxima in the magnetoresistance and anomalous Hall resistance are observed near 120K. The Hall and Seebeck coefficients are also impacted by magnetic ordering on the Fe(1) sublattice. The data suggest that both electrons and holes contribute to conduction above 120K, but that electrons dominate at lower temperature when all of the Fe sublattices are magnetically ordered. This study demonstrates a strong coupling of the magnetism and transport properties in Fe5-xGeTe2 and complements the previous results that demonstrated strong magnetoelastic coupling as the Fe(1) moments order. The published version of this manuscript is DOI:10.1103/PhysRevMaterials.3.104401 (2019)
263 - S. Kolesnik , B. Dabrowski , 2008
We combine the results of magnetic and transport measurements with neutron diffraction data to construct the structural and magnetic phase diagram of the entire family of SrMn$_{1-x}$Ru$_{x}$O$_3$ ($0 leqslant x leqslant 1$) perovskites. We have found antiferromagnetic ordering of the C type for lightly Ru-substituted materials ($0.06 leqslant x leqslant 0.5$) in a similar manner to $R_{y}$Sr$_{1-y}$MnO$_3$ ($R$=La, Pr), due to the generation of Mn$^{3+}$ in both families of manganite perovskites by either $B$-site substitution of Ru$^{5+}$ for Mn$^{4+}$ or $A$-site substitution of $R^{3+}$ for Sr$^{2+}$. This similarity is driven by the same ratio of $d^4$ / $d^3$ ions in both classes of materials for equivalent substitution level. In both cases, a tetragonal lattice distortion is observed, which for some compositions ($0.06 leqslant x leqslant 0.2$) is coupled to a C-type AF transition and results in a first order magnetic and resistive transition. Heavily substituted SrMn$_{1-x}$Ru$_{x}$O$_3$ materials are ferromagnetic due to dominating exchange interactions between the Ru$^{4+}$ ions. Intermediate substitution ($0.6 leqslant x leqslant 0.7$) leads to a spin-glass behavior instead of a quantum critical point reported previously in single crystals, due to enhanced disorder.
In this work, we investigate the correlation between morphology, composition, and the mechanical properties of metallic amorphous tungsten-oxygen and amorphous tungsten-oxide films deposited by Pulsed Laser Deposition. This correlation is investigated by the combined use of Brillouin Spectroscopy and the substrate curvature method. The stiffness of the films is strongly affected by both the oxygen content and the mass density. The elastic moduli show a decreasing trend as the mass density decreases and the oxygen-tungsten ratio increases. A plateaux region is detected in correspondence of the transition between metallic and oxide films. The compressive residual stresses, moderate stiffness and high local ductility that characterize compact amorphous tungsten-oxide films make them promising for applications involving thermal or mechanical loads. The coefficient of thermal expansion is quite high (i.e. 8.9 $cdot$ 10$^{-6}$ K$^{-1}$), being strictly correlated to the amorphous structure and stoichiometry of the films. Under thermal treatments they show a quite low relaxation temperature (i.e. 450 K). They crystallize into the $gamma$ monoclinic phase of WO$_3$ starting from 670 K, inducing an increase by about 70% of material stiffness.
We report the properties of two new isostructural compounds, U3Bi4Ni3 and U3Bi4Rh3. The first of these compounds is non-metallic, and the second is a nearly ferromagnetic metal, both as anticipated from their electron count relative to other U-based members of the larger 3-4-3 family. For U3Bi4Rh3, a logarithmic increase of C/T below 3 K, a resistivity proportional to T^4/3, and the recovery of Fermi-liquid behavior in both properties with applied fields greater than 3T, suggest that U3Bi4Rh3 may be a new example of a material displaying ferromagnetic quantum criticality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا