No Arabic abstract
Given a densely defined and closed operator $A$ acting on a complex Hilbert space $mathcal{H}$, we establish a one-to-one correspondence between its closed extensions and subspaces $mathfrak{M}subsetmathcal{D}(A^*)$, that are closed with respect to the graph norm of $A^*$ and satisfy certain conditions. In particular, this will allow us to characterize all densely defined and closed restrictions of $A^*$. After this, we will express our results using the language of Gelfand triples generalizing the well-known results for the selfadjoint case. As applications we construct: (i) a sequence of densely defined operators that converge in the generalized sense to a non-densely defined operator, (ii) a non-closable extension of a symmetric operator and (iii) selfadjoint extensions of Laplacians with a generalized boundary condition.
We show that there are $2^{2^{aleph_0}}$ different closed ideals in the Banach algebra $L(L_p(0,1))$, $1<p ot= 2<infty$. This solves a problem in A. Pietschs 1978 book Operator Ideals. The proof is quite different from other methods of producing closed ideals in the space of bounded operators on a Banach space; in particular, the ideals are not contained in the strictly singular operators and yet do not contain projections onto subspaces that are non Hilbertian. We give a criterion for a space with an unconditional basis to have $2^{2^{aleph_0}}$ closed ideals in terms of the existence of a single operator on the space with some special asymptotic properties. We then show that for $1<q<2$ the space ${frak X}_q$ of Rosenthal, which is isomorphic to a complemented subspace of $L_q(0,1)$, admits such an operator.
Let $Y$ be a sublattice of a vector lattice $X$. We consider the problem of identifying the smallest order closed sublattice of $X$ containing $Y$. It is known that the analogy with topological closure fails. Let $overline{Y}^o$ be the order closure of $Y$ consisting of all order limits of nets of elements from $Y$. Then $overline{Y}^o$ need not be order closed. We show that in many cases the smallest order closed sublattice containing $Y$ is in fact the second order closure $overline{overline{Y}^o}^o$. Moreover, if $X$ is a $sigma$-order complete Banach lattice, then the condition that $overline{Y}^o$ is order closed for every sublattice $Y$ characterizes order continuity of the norm of $X$. The present paper provides a general approach to a fundamental result in financial economics concerning the spanning power of options written on a financial asset.
For the scalar field $mathbb{K}=mathbb{R}$ or $mathbb{C}$, the multilinear Bohnenblust--Hille inequality asserts that there exists a sequence of positive scalars $(C_{mathbb{K},m})_{m=1}^{infty}$ such that %[(sumlimits_{i_{1},...,i_{m}=1}^{N}|U(e_{i_{^{1}}}%,...,e_{i_{m}})|^{frac{2m}{m+1}})^{frac{m+1}{2m}}leq C_{mathbb{K},m}sup_{z_{1},...,z_{m}inmathbb{D}^{N}}|U(z_{1},...,z_{m})|] for all $m$-linear form $U:mathbb{K}^{N}times...timesmathbb{K}% ^{N}rightarrowmathbb{K}$ and every positive integer $N$, where $(e_{i})_{i=1}^{N}$ denotes the canonical basis of $mathbb{K}^{N}$ and $mathbb{D}^{N}$ represents the open unit polydisk in $mathbb{K}^{N}$. Since its proof in 1931, the estimates for $C_{mathbb{K},m}$ have been improved in various papers. In 2012 it was shown that there exist constants $(C_{mathbb{K},m})_{m=1}^{infty}$ with subexponential growth satisfying the Bohnenblust-Hille inequality. However, these constants were obtained via a complicated recursive formula. In this paper, among other results, we obtain a closed (non-recursive) formula for these constants with subexponential growth.
The determinant of a lower Hessenberg matrix (Hessenbergian) is expressed as a sum of signed elementary products indexed by initial segments of nonnegative integers. A closed form alternative to the recurrence expression of Hessenbergians is thus obtained. This result further leads to a closed form of the general solution for regular order linear difference equations with variable coefficients, including equations of N-order and equations of ascending order.
A bounded linear operator $ A$ on a Hilbert space $ mathcal H $ is said to be an $ EP $ (hypo-$ EP $) operator if ranges of $ A $ and $ A^* $ are equal (range of $ A $ is contained in range of $ A^* $) and $ A $ has a closed range. In this paper, we define $EP$ and hypo-$EP$ operators for densely defined closed linear operators on Hilbert spaces and extend results from bounded operator settings to (possibly unbounded) closed operator settings.