Do you want to publish a course? Click here

Spectral analysis of flow and scalar primitive variables in near and far laminar wake of an elliptic cylinder

285   0   0.0 ( 0 )
 Added by Immanuvel Paul
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the primitive variables of fluid flow and scalar fields through fast Fourier transform (FFT) in the near and far wake of an elliptic cylinder. Numerical simulation of flow and scalar fields behind an elliptic cylinder of axis ratio 0.4 at a Reynolds number of 130 is performed. The semi-major axis of the elliptic cylinder is kept perpendicular to the incoming flow, where the fluid flow is two-dimensional and the Prandtl number is 0.71. The scalar is injected into the flow field by means of heating the cylinder continuously. The simulation is run for a long time to show that the secondary vortex street is a time-dependent phenomenon. Three distinguishable flow and scalar regions are observed in the wake of the cylinder. This study reveals the presence of low-frequency structures besides the primary shedding structures in linear, transition and saturation regions of temporal wake development. We show that the spectral source of the primary frequency is the saturated state of the temporal wake development, while its physical source is the periodic arrangement of structures of primitive variables, which inhibits the transmutation of their wavelength. On the other hand, the secondary low frequency is embedded in the transitional developing stage of the wake and its physical source is the chaotic behaviour of the transition process, which aids in the transmutation of the wavelength of the structures. Our spectral analysis also reveals that the scalar is predominately carried by the streamwise velocity and the pressure throughout the wake.



rate research

Read More

Unsteady laminar vortex shedding over a circular cylinder is predicted using a deep learning technique, a generative adversarial network (GAN), with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equations. Numerical simulations at two different Reynolds numbers with different time-step sizes are conducted to produce training datasets of flow field variables. Unsteady flow fields in the future at a Reynolds number which is not in the training datasets are predicted using a GAN. Predicted flow fields are found to qualitatively and quantitatively agree well with flow fields calculated by numerical simulations. The present study suggests that a deep learning technique can be utilized for prediction of laminar wake flow in lieu of solving the Navier-Stokes equations.
The impact of wall roughness on fully developed laminar pipe flow is investigated numerically. The roughness is comprised of square bars of varying size and pitch. Results show that the inverse relation between the friction factor and the Reynolds number in smooth pipes still persists in rough pipes, regardless of the rib height and pitch. At a given Reynolds number, the friction factor varies quadratically with roughness height and linearly with roughness pitch. We propose a single correlation for the friction factor that successfully collapses the data.
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydro- dynamic stresses that deform the wall, which, in turn, results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [Saintyves et al. PNAS 113(21), 2016]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely that a softer elastic layer results in a greater angular speed of the cylinder.
The flow around a cylinder oscillating in the streamwise direction with a frequency, $f_f$, much lower than the shedding frequency, $f_s$, has been relatively less studied than the case when these frequencies have the same order of magnitude, or the transverse oscillation configuration. In this study, Particle Image Velocimetry and Koopman Mode Decomposition are used to investigate the streamwise-oscillating cylinder wake for forcing frequencies $f_f/f_s sim 0.04-0.2$ and mean Reynolds number, $Re_0 = 900$. The amplitude of oscillation is such that the instantaneous Reynolds number remains above the critical value for vortex shedding at all times. Characterization of the wake reveals a range of phenomena associated with the interaction of the two frequencies, including modulation of both the amplitude and frequency of the wake structure by the forcing. Koopman analysis reveals a frequency spreading of Koopman modes. A scaling parameter and associated transformation are developed to relate the unsteady, or forced, dynamics of a system to that of a quasi-steady, or unforced, system. For the streamwise-oscillating cylinder, it is shown that this transformation leads to a Koopman Mode Decomposition similar to that of the unforced system.
105 - Duo Wang , Lei Wu 2021
The movement of subaqueous sediment in laminar shearing flow is numerically investigated by the coupled lattice Boltzmann and discrete element methods. First, the numerical method is validated by comparing the phase diagram proposed by Ouriemi {it et al.} ({it J. Fluid Mech}., vol. 636, 2009, pp. 321-336). Second, a detailed study on sediment movement is performed for sediment with varying solid volume fractions, and a nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate is observed for a densely-packed sediment. Third, an independent investigation on the effective viscosity and friction coefficient of the sediment under different fluid flow rates is conducted in a shear cell; and substitution of these two critical parameters into a theoretical expression proposed by Aussillous {it et al.} ({it J. Fluid Mech}., vol. 736, 2013, pp. 594-615) provides consistent predictions of bedload thickness with the simulation results of sediment movement. Therefore, we conclude that the non-Newtonian behaviour of densely-packed sediment leads to the nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا