Do you want to publish a course? Click here

SiAl Alloy Feedhorn Arrays: Material Properties, Feedhorn Design, and Astrophysical Applications

352   0   0.0 ( 0 )
 Added by Aamir Ali
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present here a study of the use of the SiAl alloy CE7 for the packaging of silicon devices at cryogenic temperatures. We report on the development of baseplates and feedhorn arrays for millimeter wave bolometric detectors for astrophysics. Existing interfaces to such detectors are typically made either of metals, which are easy to machine but mismatched to the thermal contraction profile of Si devices, or of silicon, which avoids the mismatch but is difficult to directly machine. CE7 exhibits properties of both Si and Al, which makes it uniquely well suited for this application. We measure CE7 to a) superconduct below a critical transition temperature, $T_c$, $sim$ 1.2 K b) have a thermal contraction profile much closer to Si than metals, which enables simple mating, and c) have a low thermal conductivity which can be improved by Au-plating. Our investigations also demonstrate that CE7 can be machined well enough to fabricate small structures, such as #0-80 threaded holes, to tight tolerances ($sim$ 25 $mu$m) in contrast with pure silicon and similar substrates. We have fabricated CE7 baseplates being deployed in the 93 GHz polarimeteric focal planes used in the Cosmology Large Angular Scale Surveyor (CLASS). We also report on the development of smooth-walled feedhorn arrays made of CE7 that will be used in a focal plane of dichroic 150/220 GHz detectors for the CLASS High-Frequency Camera.



rate research

Read More

We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16$times$16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7$^{circ}$ FHWM Gaussian-shaped beams with $<$1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 $times$ 10$^{-17}$ W/$sqrt{mathrm{Hz}}$, consistent with the phonon noise prediction.
The Simons Observatory (SO) will measure the cosmic microwave background (CMB) in both temperature and polarization over a wide range of angular scales and frequencies from 27-270 GHz with unprecedented sensitivity. One technology for coupling light onto the $sim$50 detector wafers that SO will field is spline-profiled feedhorns, which offer tunability between coupling efficiency and control of beam polarization leakage effects. We will present efforts to scale up feedhorn production for SO and their viability for future CMB experiments, including direct-machining metal feedhorn arrays and laser machining stacked Si arrays.
We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light in two linear polarizations by use of a planar orthomode transducer and senses power via four TES bolometers, one for each band in each linear polarization. Previous designs of this detector architecture incorporated passbands from 27 GHz to 220 GHz; we now demonstrate this technology at frequencies up to 315 GHz. Observational passbands are defined with an on-chip diplexer, and Fourier-transform-spectrometer measurements are in excellent agreement with simulations. We find coupling from feedhorn to TES bolometer using a cryogenic, temperature-controlled thermal source. We determine the optical efficiency of our device is $eta$ = 77%$pm$6% (75%$pm$5%) for 220 (280) GHz, relative to the designed passband shapes. Lastly, we compare two power-termination schemes commonly used in wide-bandwidth millimeter-wave polarimeters and find equal performance in terms of optical efficiency and passband shape.
We present the design, manufacturing and performance of the horn-switch system developed for the technological demonstrator of QUBIC (the $Q$&$U$ Bolometric Interferometer for Cosmology). This system is constituted of 64 back-to-back dual-band (150,GHz and 220,GHz) corrugated feed-horns interspersed with mechanical switches used to select desired baselines during the instrument self-calibration. We manufactured the horns in aluminum platelets milled by photo-chemical etching and mechanically tightened with screws. The switches are based on steel blades that open and close the wave-guide between the back-to-back horns and are operated by miniaturized electromagnets. We also show the current development status of the feedhorn-switch system for the QUBIC full instrument, based on an array of 400 horn-switch assemblies.
We present the design, manufacturing, and testing of a 37-element array of corrugated feedhorns for Cosmic Microwave Background (CMB) measurements between $140$ and $170$ GHz. The array was designed to be coupled to Kinetic Inductance Detector arrays, either directly (for total power measurements) or through an orthomode transducer (for polarization measurements). We manufactured the array in platelets by chemically etching aluminum plates of $0.3$ mm and $0.4$ mm thickness. The process is fast, low-cost, scalable, and yields high-performance antennas compared to other techniques in the same frequency range. Room temperature electromagnetic measurements show excellent repeatability with an average cross polarization level about $-20$ dB, return loss about $-25$ dB, first sidelobes below $-25$ dB and far sidelobes below $-35$ dB. Our results qualify this process as a valid candidate for state-of-the-art CMB experiments, where large detector arrays with high sensitivity and polarization purity are of paramount importance in the quest for the discovery of CMB polarization $B$-modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا