Do you want to publish a course? Click here

Generalized Adiabatic Theorem and Strong-Coupling Limits

140   0   0.0 ( 0 )
 Added by Daniel Burgarth
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We generalize Katos adiabatic theorem to nonunitary dynamics with an isospectral generator. This enables us to unify two strong-coupling limits: one driven by fast oscillations under a Hamiltonian, and the other driven by strong damping under a Lindbladian. We discuss the case where both mechanisms are present and provide nonperturbative error bounds. We also analyze the links with the quantum Zeno effect and dynamics.



rate research

Read More

143 - Amro Dodin , Paul Brumer 2021
We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized adiabatic theorems show that a sufficiently slow modulation conserves the dynamical modes of time dependent reference Hamiltonians. In the limiting case of modulations of static fields, the standard adiabatic theorems are recovered. Applying these results to periodic fields shows that they remain in Floquet states rather than in energy eigenstates. More generally, these adiabatic theorems can be applied to transformations of arbitrary time-dependent fields, by accounting for the rapidly varying part of the field through the dynamical normal modes, and treating the slow modulation adiabatically. As examples, we apply the generalized theorem to (a) predict the dynamics of a two level system driven by a frequency modulated resonant oscillation, a pathological situation beyond the applicability of earlier results, and (b) to show that open quantum systems driven by slowly turned-on incoherent light, such as biomolecules under natural illumination conditions, can only display coherences that survive in the steady state.
We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on possibly infinite-dimensional quantum systems, and establish a number of results. Firstly, we prove that optimal EC discrimination between two unitary channels does not require the use of any entanglement. Extending a result by Acin, we also show that a finite number of parallel queries suffices to achieve zero error discrimination even in this EC setting. Secondly, we employ EC diamond norms to study a novel type of quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to be relevant for benchmarking internal dynamics of quantum devices. Thirdly, we establish a version of the Solovay--Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with the approximation error being measured with respect to the EC diamond norm relative to the photon number Hamiltonian.
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H)$, the emergent order is characterized by graphs $G$ and $H$. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers $r(mathcal{T}_{m},mathcal{T}_{n})$ for trees of order $m,n = 6,7,8$, most of which were previously unknown.
224 - Remi Carles 2010
We consider the propagation of wave packets for a one-dimensional nonlinear Schrodinger equation with a matrix-valued potential, in the semi-classical limit. For an initial coherent state polarized along some eigenvector, we prove that the nonlinear evolution preserves the separation of modes, in a scaling such that nonlinear effects are critical (the envelope equation is nonlinear). The proof relies on a fine geometric analysis of the role of spectral projectors, which is compatible with the treatment of nonlinearities. We also prove a nonlinear superposition principle for these adiabatic wave packets.
459 - Frank Gaitan , Lane Clark 2011
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(m,n)$. We show how the computation of $R(m,n)$ can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for $5leq sleq 7$. We then discuss the algorithms experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class QMA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا