Do you want to publish a course? Click here

A 4.6-year period brown-dwarf companion interacting with the hot-Jupiter CoRoT-20 b

62   0   0.0 ( 0 )
 Added by Javiera Rey
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of an additional substellar companion in the CoRoT-20 system based on six years of HARPS and SOPHIE radial velocity follow-up. CoRoT-20 c has a minimum mass of 17 $pm$ 1 $M_{Jup}$ and it orbits the host star in 4.59$pm 0.05$ years, with an orbital eccentricity of 0.60 $pm$ 0.03. This is the first identified system with an eccentric hot Jupiter and an eccentric massive companion. The discovery of the latter might be an indication of the migration mechanism of the hot Jupiter, via Lidov-Kozai effect. We explore the parameter space to determine which configurations would trigger this type of interactions.



rate research

Read More

We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12 +0.30 -0.15 Rjup, a mass of 63.3 +- 4.1 Mjup, and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarfs stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve favors a spin period between 2.9 and 3.1 days for the central star, compatible with a double-synchronisation of the system.
We present the discovery of the giant planet KELT-19Ab, which transits the moderately bright $(mathrm{V} sim 9.9)$ A8V star TYC 764-1494-1 with an orbital period of 4.61 days. We confirm the planetary nature of the companion via a combination of radial velocities, which limit the mass to $< 4.1,mathrm{M_J}$ $(3sigma)$, and a clear Doppler tomography signal, which indicates a retrograde projected spin-orbit misalignment of $lambda = -179.7^{+3.7}_{-3.8}$ degrees. Global modeling indicates that the $rm{T_{eff}} =7500 pm 110,mathrm{K}$ host star has $mathrm{M_*} = 1.62^{+0.25}_{-0.20},mathrm{M_odot}$ and $mathrm{R_*} = 1.83 pm 0.10,mathrm{R_odot}$. The planet has a radius of $mathrm{R_P}=1.91 pm 0.11,mathrm{R_J}$ and receives a stellar insolation flux of $sim 3.2times 10^{9},mathrm{erg,s^{-1},cm^{-2}}$, leading to an inferred equilibrium temperature of $rm{T_{EQ}} = sim 1935,rm{K}$ assuming zero albedo and complete heat redistribution. With a $vsin{I_*}=84.8pm 2.0,mathrm{km,s^{-1}}$, the host is relatively slowly rotating compared to other stars with similar effective temperatures, and it appears to be enhanced in metallic elements but deficient in calcium, suggesting that it is likely an Am star. KELT-19A would be the first detection of an Am host of a transiting planet of which we are aware. Adaptive optics observations of the system reveal the existence of a companion with late G9V/early K1V spectral type at a projected separation of $approx 160,mathrm{AU}$. Radial velocity measurements indicate that this companion is bound. Most Am stars are known to have stellar companions, which are often invoked to explain the relatively slow rotation of the primary. In this case, the stellar companion is unlikely to have caused the tidal braking of the primary. However, it may have emplaced the transiting planetary companion via the Kozai-Lidov mechanism.
207 - V. Joergens , A. Mueller 2007
We report the discovery of a 16-20 Jupiter mass radial velocity companion around the very young (~3 Myr) brown dwarf candidate ChaHa8 (M5.75-M6.5). Based on high-resolution echelle spectra of ChaHa8 taken between 2000 and 2007 with UVES at the VLT, a companion was detected through RV variability with a semi-amplitude of 1.6 km/s. A Kepler fit to the data yields an orbital period of the companion of 1590 days and an eccentricity of e=0.49. A companion minimum mass M2sini between 16 and 20 Jupiter masses is derived when using model-dependent mass estimates for the primary. The mass ratio q= M2/M1 might be as small as 0.2 and, with a probability of 87%, it is less than 0.4. ChaHa8 harbors most certainly the lowest mass companion detected so far in a close (~ 1 AU) orbit around a brown dwarf or very low-mass star. From the uncertainty in the orbit solution, it cannot completely be ruled out that the companion has a mass in the planetary regime. Its discovery is in any case an important step towards RV planet detections around BDs. Further, ChaHa8 is the fourth known spectroscopic brown dwarf or very low-mass binary system with an RV orbit solution and the second known very young one.
Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer companion in an eccentric (e=0.3) 223-d orbit. The outer giant planet, Kepler-424c, is not detected to transit the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets, the appear to be lonely (e.g. Steffen et al.~2012). This might be a consequence of a highly dynamical past of these systems. The Kepler-424 planetary system is a system with a hot Jupiter in a multiple system, similar to upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127; Gandolfi et al.~2013), Kepler-43 (KOI-135; Bonomo et al.~2012), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope and HET. For all systems we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have a heavy elements content between 20 and 120 M_Earth.
Transiting planets orbiting bright stars are the most favorable targets for follow-up and characterization. We report the discovery of the transiting hot Jupiter XO-7 b and of a second, massive companion on a wide orbit around a circumpolar, bright, and metal rich G0 dwarf (V = 10.52, $T_{rm eff} = 6250 pm 100 ; rm K$, $rm[Fe/H] = 0.432 pm 0.057 ; rm dex$). We conducted photometric and radial velocity follow-up with a team of amateur and professional astronomers. XO-7 b has a period of $ 2.8641424 pm 0.0000043$ days, a mass of $0.709 pm 0.034 ; rm M_{rm J}$, a radius of $1.373 pm 0.026 ; rm R_{rm J}$, a density of $0.340 pm 0.027 ; rm g , {cm}^{-3}$, and an equilibrium temperature of $1743 pm 23 ; rm K$. Its large atmospheric scale height and the brightness of the host star make it well suited to atmospheric characterization. The wide orbit companion is detected as a linear trend in radial velocities with an amplitude of $sim100 ; rm m , {s}^{-1}$ over two years, yielding a minimum mass of $4 ; rm M_{rm J}$; it could be a planet, a brown dwarf, or a low mass star. The hot Jupiter orbital parameters and the presence of the wide orbit companion point towards a high eccentricity migration for the hot Jupiter. Overall, this system will be valuable to understand the atmospheric properties and migration mechanisms of hot Jupiters and will help constrain the formation and evolution models of gas giant exoplanets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا