Do you want to publish a course? Click here

Travelling waves and light-front approach in relativistic electrodynamics

78   0   0.0 ( 0 )
 Added by Gaetano Fiore
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We briefly report on a recent proposal (Fiore in J Phys A Math Theor 51:085203, 2018) for simplifying the equations of motion of charged particles in an electromagnetic (EM) field $F^{mu u}$ that is the sum of a plane travelling wave $F_t^{mu u}(ct!-!z)$ and a static part $F_s^{mu u}(x,y,z)$; it adopts the light-like coordinate $xi=ct!-!z$ instead of time $t$ as an independent variable. We illustrate it in a few cases of extreme acceleration, first of an isolated particle, then of electrons in a plasma in plane hydrodynamic conditions: the Lorentz-Maxwell & continuity PDEs can be simplified or sometimes even completely reduced to a family of decoupled systems of ordinary ones; this occurs e.g. with the impact of the travelling wave on a vacuum-plasma interface (what may produce plasma waves or the slingshot effect).



rate research

Read More

60 - Gaetano Fiore 2020
We illustrate how our recent light-front approach simplifies relativistic electrodynamics with an electromagnetic (EM) field $F^{mu u}$ that is the sum of a (even very intense) plane travelling wave $F_t^{mu u}(ct!-!z)$ and a static part $F_s^{mu u}(x,y,z)$; it adopts the light-like coordinate $xi=ct!-!z$ instead of time $t$ as an independent variable. This can be applied to several cases of extreme acceleration, both in vacuum and in a cold diluted plasma hit by a very short and intense laser pulse (slingshot effect, plasma wave-breaking and laser wake-field acceleration, etc.)
360 - Damien Minenna 2018
To model momentum exchange in nonlinear wave-particle interaction, as in amplification devices like traveling-wave tubes, we use an $N$-body self-consistent hamiltonian description based on Kuznetsovs discrete model, and we provide new formulations for the electromagnetic power and the conserved momentum. This approach leads to fast and accurate numerical simulations in time domain and in one dimensional space.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunctions are generated by solving the eigenvalue equation in a basis light-front quantization. Fitting the model parameters, the wavefunctions lead to good simultaneous description of electromagnetic form factors, radii, and parton distribution functions for the proton.
For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0to 0$ one carries zero mode contributions.
Basis Light-front Quantization (BLFQ) has recently been developed as a promising nonperturbative technique. Using BLFQ, we investigate the Generalized Parton Distributions (GPDs) in a nonperturbative framework for a dressed electron in QED. We evaluate light-front wave functions and carry out overlap calculations to obtain GPDs. We also perform perturbative calculations in the corresponding basis spaces to demonstrate that they compare reasonably with the BLFQ results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا