Do you want to publish a course? Click here

Quantum algorithm for visual tracking

77   0   0.0 ( 0 )
 Added by Chao-Hua Yu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Visual tracking (VT) is the process of locating a moving object of interest in a video. It is a fundamental problem in computer vision, with various applications in human-computer interaction, security and surveillance, robot perception, traffic control, etc. In this paper, we address this problem for the first time in the quantum setting, and present a quantum algorithm for VT based on the framework proposed by Henriques et al. [IEEE Trans. Pattern Anal. Mach. Intell., 7, 583 (2015)]. Our algorithm comprises two phases: training and detection. In the training phase, in order to discriminate the object and background, the algorithm trains a ridge regression classifier in the quantum state form where the optimal fitting parameters of ridge regression are encoded in the amplitudes. In the detection phase, the classifier is then employed to generate a quantum state whose amplitudes encode the responses of all the candidate image patches. The algorithm is shown to be polylogarithmic in scaling, when the image data matrices have low condition numbers, and therefore may achieve exponential speedup over the best classical counterpart. However, only quadratic speedup can be achieved when the algorithm is applied to implement the ultimate task of Henriquess framework, i.e., detecting the object position. We also discuss two other important applications related to VT: (1) object disappearance detection and (2) motion behavior matching, where much more significant speedup over the classical methods can be achieved. This work demonstrates the power of quantum computing in solving computer vision problems.



rate research

Read More

For two unknown quantum states $rho$ and $sigma$ in an $N$-dimensional Hilbert space, computing their fidelity $F(rho,sigma)$ is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this Letter, we propose a quantum algorithm that solves this problem in $text{poly}(log (N), r)$ time, where $r$ is the lower rank of $rho$ and $sigma$. This algorithm exhibits an exponential improvement over the best-known algorithm (based on quantum state tomography) in $text{poly}(N, r)$ time.
We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamiltonian within a selected energy interval $[E-epsilon, E+epsilon]$. In order to reduce the spectral weight of all other eigenvectors by a suppression factor $delta$, the required computational effort scales as $O[|log delta|/(p epsilon)]$, where $p$ is the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo algorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter $E$. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic factor that depends on the proximity of their energy to $E$. In this manner, we converge to the target eigenvector with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples. For energy eigenvalue determination with error $epsilon$, the computational scaling is $O[(log epsilon)^2/(p epsilon)]$. For eigenstate preparation, the computational scaling is $O(log Delta/p)$, where $Delta$ is the magnitude of the orthogonal component of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation or adiabatic evolution.
We propose a quantum inverse iteration algorithm which can be used to estimate the ground state properties of a programmable quantum device. The method relies on the inverse power iteration technique, where the sequential application of the Hamiltonian inverse to an initial state prepares an approximate groundstate. To apply the inverse Hamiltonian operation, we write it as a sum of unitary evolution operators using the Fourier approximation approach. This allows to reformulate the protocol as separate measurements for the overlap of initial and propagated wavefunction. The algorithm thus crucially depends on the ability to run Hamiltonian dynamics with an available quantum device. We benchmark the performance using paradigmatic examples of quantum chemistry, corresponding to molecular hydrogen and beryllium hydride. Finally, we show its use for studying the ground state properties of relevant material science models which can be simulated with existing devices, considering an example of the Bose-Hubbard atomic simulator.
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.
In the current era of noisy quantum devices, there is a need for quantum algorithms that are efficient and robust against noise. Towards this end, we introduce the projected cooling algorithm for quantum computation. The projected cooling algorithm is able to construct the localized ground state of any Hamiltonian with a translationally-invariant kinetic energy and interactions that vanish at large distances. The term localized refers to localization in position space. The method can be viewed as the quantum analog of evaporative cooling. We start with an initial state with support over a compact region of a large volume. We then drive the excited quantum states to disperse and measure the remaining portion of the wave function left behind. For the nontrivial examples we consider here, the improvement over other methods is substantial. The only additional resource required is performing the operations in a volume significantly larger than the size of the localized state. These characteristics make the projected cooling algorithm a promising tool for calculations of self-bound systems such as atomic nuclei.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا