Do you want to publish a course? Click here

Projected Cooling Algorithm for Quantum Computation

85   0   0.0 ( 0 )
 Added by Dean Lee J
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the current era of noisy quantum devices, there is a need for quantum algorithms that are efficient and robust against noise. Towards this end, we introduce the projected cooling algorithm for quantum computation. The projected cooling algorithm is able to construct the localized ground state of any Hamiltonian with a translationally-invariant kinetic energy and interactions that vanish at large distances. The term localized refers to localization in position space. The method can be viewed as the quantum analog of evaporative cooling. We start with an initial state with support over a compact region of a large volume. We then drive the excited quantum states to disperse and measure the remaining portion of the wave function left behind. For the nontrivial examples we consider here, the improvement over other methods is substantial. The only additional resource required is performing the operations in a volume significantly larger than the size of the localized state. These characteristics make the projected cooling algorithm a promising tool for calculations of self-bound systems such as atomic nuclei.

rate research

Read More

We propose a quantum information based scheme to reduce the temperature of quantum many-body systems, and access regimes beyond the current capability of conventional cooling techniques. We show that collective measurements on multiple copies of a system at finite temperature can simulate measurements of the same system at a lower temperature. This idea is illustrated for the example of ultracold atoms in optical lattices, where controlled tunnel coupling and quantum gas microscopy can be naturally combined to realize the required collective measurements to access a lower, virtual temperature. Our protocol is experimentally implemented for a Bose-Hubbard model on up to 12 sites, and we successfully extract expectation values of observables at half the temperature of the physical system. Additionally, we present related techniques that enable the extraction of zero-temperature states directly.
The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.
Bayesian methods which utilize Bayes theorem to update the knowledge of desired parameters after each measurement, are used in a wide range of quantum science. For various applications in quantum science, efficiently and accurately determining a quantum transition frequency is essential. However, the exact relation between a desired transition frequency and the controllable experimental parameters is usually absent. Here, we propose an efficient scheme to search the suitable conditions for a desired quantum transition via an adaptive Bayesian algorithm, and experimentally demonstrate it by using coherent population trapping in an ensemble of laser-cooled $^{87}$Rb atoms. The transition frequency is controlled by an external magnetic field, which can be tuned in realtime by applying a d.c. voltage. Through an adaptive Bayesian algorithm, the voltage can automatically converge to the desired one from a random initial value only after few iterations. In particular, when the relation between the target frequency and the applied voltage is nonlinear, our algorithm shows significant advantages over traditional methods. This work provides a simple and efficient way to determine a transition frequency, which can be widely applied in the fields of precision spectroscopy, such as atomic clocks, magnetometers, and nuclear magnetic resonance.
Trapped-ion quantum simulators, in analog and digital modes, are considered a primary candidate to achieve quantum advantage in quantum simulation and quantum computation. The underlying controlled ion-laser interactions induce all-to-all two-spin interactions via the collective modes of motion through Cirac-Zoller or Molmer-Sorensen schemes, leading to effective two-spin Hamiltonians, as well as two-qubit entangling gates. In this work, the Molmer-Sorensen scheme is extended to induce three-spin interactions via tailored first- and second-order spin-motion couplings. The scheme enables engineering single-, two-, and three-spin interactions, and can be tuned via an enhanced protocol to simulate purely three-spin dynamics. Analytical results for the effective evolution are presented, along with detailed numerical simulations of the full dynamics to support the accuracy and feasibility of the proposed scheme for near-term applications. With a focus on quantum simulation, the advantage of a direct analog implementation of three-spin dynamics is demonstrated via the example of matter-gauge interactions in the U(1) lattice gauge theory within the quantum link model. The mapping of degrees of freedom and strategies for scaling the three-spin scheme to larger systems, are detailed, along with a discussion of the expected outcome of the simulation of the quantum link model given realistic fidelities in the upcoming experiments. The applications of the three-spin scheme go beyond the lattice gauge theory example studied here and include studies of static and dynamical phase diagrams of strongly interacting condensed-matter systems modeled by two- and three-spin Hamiltonians.
We introduce protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices. These qubits are formed from two-atom spin superposition states that create a decoherence-free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single-site addressability and Feshbach resonance control of state-of-the-art alkali atom systems. Our protocol requires no continuous driving or spin-dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in-site exchange and cross-site superexchange interactions. As a proof-of-principle example of their utility for entanglement generation for quantum computation, we show the cross-site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out-of-time-ordered correlation functions (OTOCs).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا