Do you want to publish a course? Click here

Structural transitions in hybrid improper ferroelectric Ca$_3$Ti$_2$O$_7$ tuned by site-selective iso-valent substitutions: a first-principles study

78   0   0.0 ( 0 )
 Added by Shuai Dong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ca$_3$Ti$_2$O$_7$ is an experimentally confirmed hybrid improper ferroelectric material, in which the electric polarization is induced by a combination of the coherent TiO$_6$ octahedral rotation and tilting. In this work, we investigate the tuning of ferroelectricity of Ca$_3$Ti$_2$O$_7$ using iso-valent substitutions on Ca-sites. Due to the size mismatch, larger/smaller alkaline earths prefer $A$/$A$ sites respectively, allowing the possibility for site-selective substitutions. Without extra carriers, such site-selected iso-valent substitutions can significantly tune the TiO$_6$ octahedral rotation and tilting, and thus change the structure and polarization. Using the first-principles calculations, our study reveals that three substituted cases (Sr, Mg, Sr+Mg) show divergent physical behaviors. In particular, (CaTiO$_3$)$_2$SrO becomes non-polar, which can reasonably explain the suppression of polarization upon Sr substitution observed in experiment. In contrast, the polarization in (MgTiO$_3$)$_2$CaO is almost doubled upon substitutions, while the estimated coercivity for ferroelectric switching does not change. The (MgTiO$_3$)$_2$SrO remains polar but its structural space group changes, with moderate increased polarization and possible different ferroelectric switching paths. Our study reveals the subtle ferroelectricity in the $A_3$Ti$_2$O$_7$ family and suggests one more practical route to tune hybrid improper ferroelectricity, in addition to the strain effect.



rate research

Read More

Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90$^circ$ ferroelectric) domain walls in the hybrid improper ferroelectric Ca$_3$Ti$_2$O$_7$. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.
The charged domain walls in ferroelectric materials exhibit intriguing physical properties. We examine herein the charged-domain-wall structures in Ca$_{3-x}$Sr$_x$Ti$_2$O$_7$ using transmission electron microscopy. When viewed along the [001] axis, the wavy charged domain walls are observed over a wide range ($>$5 $mu$m). In contrast, short charged-domain-wall fragments (from 10 to 200 nm long) occur because they are intercepted and truncated by the conventional 180$^{deg}$ domain walls. These results reveal the unusual charged domain structures in Ca$_{3-x}$Sr$_x$Ti$_2$O$_7$ and will be useful for understanding their formation process.
118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ agrees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
In the metallic pyrochlore Nd$_2$Mo$_2$O$_7$, the conducting Molybdenum sublattice adopts canted, yet nearly collinear ferromagnetic order with nonzero scalar spin chirality. The chemical potential may be controlled by replacing Nd$^{3+}$ with Ca$^{2+}$, while introducing only minimal additional disorder to the conducting states. Here, we demonstrate the stability of the canted ferromagnetic state, including the tilting angle of Molybdenum spins, in (Nd$_{1-x}$Ca$_{x}$)$_2$Mo$_2$O$_7$ (NCMO) with $xle 0.15$ using magnetic susceptibility measurements. Mo-Mo and Mo-Nd magnetic couplings both change sign above $x=0.22$, where the canted ferromagnetic state gives way to a spin-glass metallic region. Contributions to the Curie-Weiss law from two magnetic sublattices are separated systematically.
172 - Craig J. Fennie , Ram Seshadri , 2007
The oxide pyrochlore Bi$_2$Ti$_2$O$_7$ is in some ways analogous to perovskite PbTiO$_3$, in that Bi$_2$Ti$_2$O$_7$ has two cations, Bi$^{3+}$ and Ti$^{4+}$ in oxidation states that are normally associated with a propensity to off-center. However, unlike PbTiO$_3$, Bi$_2$Ti$_2$O$_7$ is experimentally observed to remain cubic down to 2 K, while the only observed ionic displacements are local and incoherent. Here we report first-principles calculations of the zone-center phonons of the ordered cubic pyrochlore which reveal several lattice instabilities. An analysis of the structural energetics suggest that the ordered cubic pyrochlore is unstable with respect to distortion towards a ferroelectric ground state with a large polarization. Our results suggest a key role of a frustrated soft polar mode in the dielectric properties of bismuth pyrochlores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا