Do you want to publish a course? Click here

Multiferroicity and magnetoelastic coupling in alpha-Mn2O3: A binary perovskite

106   0   0.0 ( 0 )
 Added by Kiran Singh
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiferroics where at least two primary ferroic orders are present and coupled in a single system constitute an important class of materials. They attracted special consideration as they present both intriguing fundamental physics problems and technological importance for potential multifunctional devices. Here, we present the evidence of multiferroicity and magnetoelectric (ME) coupling in alpha-Mn2O3; a unique binary perovskite. Corresponding to the antiferromagnetic (AFM) ordering around 80K, a clear frequency independent transition is observed in the dielectric permittivity. We showed that electric polarization emerges near AFM regime that can be modulated with magnetic field. The detailed structural analysis using synchrotron radiation X-ray diffraction demonstrates the increase in structural distortion with decreasing temperature, as well as changes in the unit cell parameters and bond lengths across the ferroelectric and magnetic ordering temperatures. This observation of multiferroicity and magnetoelastic coupling in alpha-Mn2O3 provides insights for the exploration of ME coupling in related materials.



rate research

Read More

The effect of Cr doping with nominal compositions Mn2-xCrxO3 (0 less than equal to x less than equal to 0.10) has been undertaken to investigate its effect on structural, magnetic, dielectric and magnetoelectric properties. The Cr doping transformed the room temperature crystal structure from orthorhombic to cubic symmetry. Similar to alpha-Mn2O3, two magnetic transitions have been observed in the Cr doped samples. The effect of Cr doping is significant on the low temperature transition i.e. the lower magnetic transition shifted towards higher temperature (25 K for pristine to 40 K for x=0.10) whereas the high temperature transition decreases slightly with increasing Cr content. A clear frequency independent transition is observed in complex dielectric measurements for all compositions around high temperature magnetic ordering. Interestingly, the magnetodielectric behaviour enhanced enormously approx 21% with Cr substitution as compared to pristine Mn2O3.
219 - K. F. Wang , J. -M. Liu , 2009
Multiferroics, defined for those multifunctional materials in which two or more kinds of fundamental ferroicities coexist, have become one of the hottest topics of condensed matter physics and materials science in recent years. The coexistence of several order parameters in multiferroics brings out novel physical phenomena and offers possibilities for new device functions. The revival of research activities on multiferroics is evidenced by some novel discoveries and concepts, both experimentally and theoretically. In this review article, we outline some of the progressive milestones in this stimulating field, specially for those single phase multiferroics where magnetism and ferroelectricity coexist. Firstly, we will highlight the physical concepts of multiferroicity and the current challenges to integrate the magnetism and ferroelectricity into a single-phase system. Subsequently, we will summarize various strategies used to combine the two types of orders. Special attentions to three novel mechanisms for multiferroicity generation: (1) the ferroelectricity induced by the spin orders such as spiral and E-phase antiferromagnetic spin orders, which break the spatial inversion symmetry, (2) the ferroelectricity originating from the charge ordered states, and (3) the ferrotoroidic system, will be paid. Then, we will address the elementary excitations such as electromagnons, and application potentials of multiferroics. Finally, open questions and opportunities will be prospected.
197 - C. A. F. Vaz 2008
Analytical expressions for the magnetoelastic anisotropy constants of cubic magnetic systems are derived for rectangular and oblique distortions originating from epitaxial growth on substrates with lower crystal symmetry. In particular, the temperature variation of the magnetic properties of magnetic films grown on barium titanate (BaTiO3) substrates are explained in terms of strain-induced magnetic anisotropies caused by the temperature dependent phase transitions of BaTiO3. Our results quantify the experimental observations in ferromagnet/bto-based structures, which have been proposed as templates for magnetoelectric composite heterostructures.
We have successfully synthesized three quasi-2D geometrically frustrated magnetic compounds (alpha-MCr_2O_4, M=Ca, Sr, Ba) using the spark-plasma-sintering technique. All these members of the alpha-MCr_2O_4 family consist of the stacking planar triangular lattices of Cr$^{3+}$ spins (${rm S}=3/2$), separated by non-magnetic alkaline earth ions. Their corresponding magnetic susceptibility, specific heat, dielectric permittivity and ferroelectric polarization are systematically investigated. A long-range magnetic ordering arises below the N{e}el temperature (around 40K) in each member of the alpha-MCr_2O_4 family, which changes to the quasi-120degree proper-screw-type helical spin structure at low temperature. A very small but confirmed spontaneous electric polarization emerges concomitantly with this magnetic ordering. The direction of electric polarization is found within the basal triangular plane. The multiferroicity in alpha-MCr_2O_4 can not be explained within the frameworks of the magnetic exchange striction or the inverse Dzyaloshinskii-Moriya interaction. The observed results are more compatible with the newly proposed Arima mechanism that is associated the d-p hybridization between the ligand and transition metal ions, modified by the spin-orbit coupling. The evolution of multiferroic properties with the increasing inter-planar spacing (as M changes from Ca to Ba) reveals the importance of interlayer interaction in this new family of frustrated magnetic systems.
Dielectric study on Ca3Mn2O7 features relaxor-like segmented dynamics below the antiferromagnetic ordering. Dipolar relaxations of different origin are spectrally resolved exhibiting distinct H-field alterations. This identifies their allegiance to different magnetic sub-phases and establishes dual coupling of electrical, magnetic, and structural degrees of freedom. Further, strong spin-lattice coupling has been affirmed with Raman spectroscopy across the magnetic ordering. Short-range electrical correlations collaterally cause measurable harmonic dielectric response in the system. The c{hi}_3^e-susceptibility signal yields genuine harmonic magneto-dielectricity, consistent with but exhibiting two orders of magnitude larger H-field effect, vis-`a-vis that obtained in the fundamental dielectric constant {epsilon}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا