Do you want to publish a course? Click here

Modeling the growth of organisms validates a general relation between metabolic costs and natural selection

62   0   0.0 ( 0 )
 Added by Michael Hinczewski
 Publication date 2018
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Metabolism and evolution are closely connected: if a mutation incurs extra energetic costs for an organism, there is a baseline selective disadvantage that may or may not be compensated for by other adaptive effects. A long-standing, but to date unproven, hypothesis is that this disadvantage is equal to the fractional cost relative to the total resting metabolic expenditure. This hypothesis has found a recent resurgence as a powerful tool for quantitatively understanding the strength of selection among different classes of organisms. Our work explores the validity of the hypothesis from first principles through a generalized metabolic growth mode



rate research

Read More

During last years theoretical works shed new light and proposed new hypothesis on the mechanisms which regulate the time behaviour of biological populations in different natural systems. Despite of this, the role of environmental variables in ecological systems is still an open question. Filling this gap of knowledge is a crucial task for a deeper comprehension of the dynamics of biological populations in real ecosystems. In this work we study how the dynamics of food spoilage bacteria influences the sensory characteristics of fresh fish specimens. This topic is crucial for a better understanding of the role played by the bacterial growth on the organoleptic properties, and for the quality evaluation and risk assessment of food products. We therefore analyze the time behaviour, in fresh fish specimens, of sensory characteristics starting from the growth curves of two spoilage bacterial communities. The theoretical study, initially based on a deterministic model, exploits experimental temperature profiles. As a first step, a model of predictive microbiology is used to reproduce the experimental behaviour of the two bacterial populations. Afterwards, the theoretical bacterial growths are converted, through suitable differential equations, into sensory scores, based on the Quality Index Method (QIM), a scoring system for freshness and quality sensory estimation of fishery products. As a third step, the theoretical curves of QIM scores are compared with the experimental data obtained by sensory analysis. Finally, the differential equations for QIM scores are modified by adding terms of multiplicative white noise, which mimics the effects of uncertainty and variability in sensory analysis. A better agreement between experimental and theoretical QIM scores is observed, in some cases, in the presence of suitable values of noise intensity respect to the deterministic analysis.
145 - A. Pc{e}kalski 2007
We investigate in detail the model of a trophic web proposed by Amaral and Meyer [Phys. Rev. Lett. 82, 652 (1999)]. We focused on small-size systems that are relevant for real biological food webs and for which the fluctuations are playing an important role. We show, using Monte Carlo simulations, that such webs can be non-viable, leading to extinction of all species in small and/or weakly coupled systems. Estimations of the extinction times and survival chances are also given. We show that before the extinction the fraction of highly-connected species (omnivores) is increasing. Viable food webs exhibit a pyramidal structure, where the density of occupied niches is higher at lower trophic levels, and moreover the occupations of adjacent levels are closely correlated. We also demonstrate that the distribution of the lengths of food chains has an exponential character and changes weakly with the parameters of the model. On the contrary, the distribution of avalanche sizes of the extinct species depends strongly on the connectedness of the web. For rather loosely connected systems we recover the power-law type of behavior with the same exponent as found in earlier studies, while for densely-connected webs the distribution is not of a power-law type.
147 - John C. Baez 2021
Suppose we have $n$ different types of self-replicating entity, with the population $P_i$ of the $i$th type changing at a rate equal to $P_i$ times the fitness $f_i$ of that type. Suppose the fitness $f_i$ is any continuous function of all the populations $P_1, dots, P_n$. Let $p_i$ be the fraction of replicators that are of the $i$th type. Then $p = (p_1, dots, p_n)$ is a time-dependent probability distribution, and we prove that its speed as measured by the Fisher information metric equals the variance in fitness. In rough terms, this says that the speed at which information is updated through natural selection equals the variance in fitness. This result can be seen as a modified version of Fishers fundamental theorem of natural selection. We compare it to Fishers original result as interpreted by Price, Ewens and Edwards.
Quantitative studies of cell metabolism are often based on large chemical reaction network models. A steady state approach is suited to analyze phenomena on the timescale of cell growth and circumvents the problem of incomplete experimental knowledge on kinetic laws and parameters, but it shall be supported by a correct implementation of thermodynamic constraints. In this article we review the latter aspect highlighting its computational challenges and physical insights. The simple introduction of Gibbs inequalities avoids the presence of unfeasible loops allowing for correct timescale analysis but leads to possibly non-convex feasible flux spaces, whose exploration needs efficient algorithms. We shorty review on the implementation of thermodynamics through variational principles in constraints based models of metabolic networks.
178 - Liang Tian , Xuefei Li , Fei Qi 2020
Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R_0 through specific disease control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R_0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا