Do you want to publish a course? Click here

Reducing subspaces of multiplication operators on the Dirichlet space

305   0   0.0 ( 0 )
 Added by Shuaibing Luo
 Publication date 2018
  fields
and research's language is English
 Authors Shuaibing Luo




Ask ChatGPT about the research

In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product $phi$ on the Dirichlet space $D$. We prove that any two distinct nontrivial minimal reducing subspaces of $M_phi$ are orthogonal. When the order $n$ of $phi$ is $2$ or $3$, we show that $M_phi$ is reducible on $D$ if and only if $phi$ is equivalent to $z^n$. When the order of $phi$ is $4$, we determine the reducing subspaces for $M_phi$, and we see that in this case $M_phi$ can be reducible on $D$ when $phi$ is not equivalent to $z^4$. The same phenomenon happens when the order $n$ of $phi$ is not a prime number. Furthermore, we show that $M_phi$ is unitarily equivalent to $M_{z^n} (n > 1)$ on $D$ if and only if $phi = az^n$ for some unimodular constant $a$.



rate research

Read More

This paper is devoted to the study of reducing subspaces for multiplication operator $M_phi$ on the Dirichlet space with symbol of finite Blaschke product. The reducing subspaces of $M_phi$ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surface to study the reducing subspaces of $M_phi$ on the Bergman space, and we discover a new way to study the Riemann surface for $phi^{-1}circphi$. By this means, we determine the reducing subspaces of $M_phi$ on the Dirichlet space when the order of $phi$ is $5$; $6$; $7$ and answer some questions of Douglas-Putinar-Wang cite{DPW12}.
We provide a characterization of the commutant of analytic Toeplitz operators $T_B$ induced by finite Blachke products $B$ acting on weighted Bergman spaces which, as a particular instance, yields the case $B(z)=z^n$ on the Bergman space solved recently by by Abkar, Cao and Zhu. Moreover, it extends previous results by Cowen and Wahl in this context and applies to other Banach spaces of analytic functions such as Hardy spaces $H^p$ for $1<p<infty$. Finally, we apply this approach to study reducing subspaces of $T_{B}$ in the classical Bergman space. As a particular instance, we provide a direct proof of a theorem of Hu, Sun, Xu and Yu which states that every analytic Toeplitz operator $T_B$ induced by a finite Blachke product on the Bergman space is reducible and the restriction of $T_B$ on a reducing subspace is unitarily equivalent to the Bergman shift.
We consider composition operators $mathscr{C}_varphi$ on the Hardy space of Dirichlet series $mathscr{H}^2$, generated by Dirichlet series symbols $varphi$. We prove two different subordination principles for such operators. One concerns affine symbols only, and is based on an arithmetical condition on the coefficients of $varphi$. The other concerns general symbols, and is based on a geometrical condition on the boundary values of $varphi$. Both principles are strict, in the sense that they characterize the composition operators of maximal norm generated by symbols having given mapping properties. In particular, we generalize a result of J. H. Shapiro on the norm of composition operators on the classical Hardy space of the unit disc. Based on our techniques, we also improve the recently established upper and lower norm bounds in the special case that $varphi(s) = c + r2^{-s}$. A number of other examples are given.
Let $mathscr{H}^2$ denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators $mathscr{C}_varphi$ on $mathscr{H}^2$ which are generated by symbols of the form $varphi(s) = c_0s + sum_{ngeq1} c_n n^{-s}$, in the case that $c_0 geq 1$. If only a subset $mathbb{P}$ of prime numbers features in the Dirichlet series of $varphi$, then the operator $mathscr{C}_varphi$ admits an associated orthogonal decomposition. Under sparseness assumptions on $mathbb{P}$ we use this to asymptotically estimate the approximation numbers of $mathscr{C}_varphi$. Furthermore, in the case that $varphi$ is supported on a single prime number, we affirmatively settle the problem of describing the compactness of $mathscr{C}_varphi$ in terms of the ordinary Nevanlinna counting function. We give detailed applications of our results to affine symbols and to angle maps.
169 - Caixing Gu , Shuaibing Luo 2018
In this paper we propose a different (and equivalent) norm on $S^{2} ({mathbb{D}})$ which consists of functions whose derivatives are in the Hardy space of unit disk. The reproducing kernel of $S^{2}({mathbb{D}})$ in this norm admits an explicit form, and it is a complete Nevanlinna-Pick kernel. Furthermore, there is a surprising connection of this norm with $3$ -isometries. We then study composition and multiplication operators on this space. Specifically, we obtain an upper bound for the norm of $C_{varphi}$ for a class of composition operators. We completely characterize multiplication operators which are $m$-isometries. As an application of the 3-isometry, we describe the reducing subspaces of $M_{varphi}$ on $S^{2}({mathbb{D}})$ when $varphi$ is a finite Blaschke product of order 2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا