Do you want to publish a course? Click here

Reduced sensitivity of the $(d, p)$ cross sections to the deuteron model beyond adiabatic approximation

83   0   0.0 ( 0 )
 Added by Mario Gomez Ramos
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

It has recently been reported [Phys. Rev. Lett. 117, 162502 (2016)] that (d, p) cross sections can be very sensitive to the n-p interactions used in the adiabatic treatment of deuteron breakup with nonlocal nucleon-target optical potentials. To understand to what extent this sensitivity could originate in the inaccuracy of the adiabatic approximation we have developed a leading-order local- equivalent continuum-discretized coupled-channel model that accounts for non-adiabatic effects in the presence of nonlocality of nucleon optical potentials. We have applied our model to the astro- physically relevant reaction $^{26m}$Al$(d, p) ^{27}$Al using two different n-p potentials associated with the lowest and the highest n-p kinetic energy in the short-range region of their interaction, respectively. Our calculations reveal a significant reduction of the sensitivity to the high n-p momenta thus confirming that it is mostly associated with theoretical uncertainties of the adiabatic approximation itself. The non-adiabatic effects in the presence of nonlocality were found to be stronger than those in the case of the local optical potentials. These results argue for extending the analysis of the $(d, p)$ reactions, measured for spectroscopic studies, beyond the adiabatic approximation.



rate research

Read More

The adiabatic distorted wave approximation (ADWA) is widely used by the nuclear community to analyse deuteron stripping ($d$,$p$) experiments. It provides a quick way to take into account an important property of the reaction mechanism: deuteron breakup. In this work we provide a numerical quantification of a perturbative correction to this theory, recently proposed in [R.C. Johnson, J. Phys. G: Nucl. Part. Phys. 41 (2014) 094005] for separable rank-one nucleon-proton potentials. The correction involves an additional, nonlocal, term in the effective deuteron-target ADWA potential in the entrance channel. We test the calculations with perturbative corrections against continuum-discretized coupled channel predictions which treat deuteron breakup exactly.
Total reaction cross sections of deuteron, $sigma_d^{rm R}$, are calculated by a microscopic three-body reaction model. The reaction model has no free adjustable parameter and applicable to reactions at various deuteron incident energies $E_d$ and with both stable and unstable nuclei. The predicted $sigma_d^{rm R}$ are consistent with those evaluated by a phenomenological optical potential for $E_dleq 200$ MeV in which the potential has been parametrized. A simple formula of $sigma_d^{rm R}$ up to $E_d=1$ GeV, as a function of $E_d$, the target mass number $A$ and its atomic number $Z$, is given.
142 - F.M. Nunes , A. Deltuva 2011
The finite range adiabatic wave approximation provides a practical method to analyze (d,p) or (p,d) reactions, however until now the level of accuracy obtained in the description of the reaction dynamics has not been determined. In this work, we perform a systematic comparison between the finite range adiabatic wave approximation and the exact Faddeev method. We include studies of $^{11}$Be(p,d)$^{10}$Be(g.s.) at $E_p=$5, 10 and 35 MeV; $^{12}$C(d,p)$^{13}$C(g.s.) at $E_d=$7, 12 and 56 MeV and $^{48}$Ca(d,p)$^{49}$Ca(g.s.) at $E_d=$19, 56 and 100 MeV. Results show that the two methods agree within $approx 5%$ for a range of beam energies ($E_d approx 20-40$ MeV) but differences increase significantly for very low energies and for the highest energies. Our tests show that ADWA agrees best with Faddeev when the angular momentum transfer is small $Delta l=0$ and when the neutron-nucleus system is loosely bound.
Theoretical models of the (d,p) reaction are exploited for both nuclear astrophysics and spectroscopic studies in nuclear physics. Usually, these reaction models use local optical model potentials to describe the nucleon- and deuteron-target interactions. Within such a framework the importance of the deuteron D-state in low-energy reactions is normally associated with spin observables and tensor polarization effects - with very minimal influence on differential cross sections. In contrast, recent work that includes the inherent nonlocality of the nucleon optical model potentials in the Johnson-Tandy adiabatic-model description of the (d,p) transition amplitude, which accounts for deuteron break-up effects, shows sensitivity of the reaction to the large n-p relative momentum content of the deuteron wave function. The dominance of the deuteron D-state component at such high momenta leads to significant sensitivity of calculated (d,p) cross sections and deduced spectroscopic factors to the choice of deuteron wave function [Phys. Rev. Lett. {bf 117}, 162502 (2016)]. We present details of the Johnson-Tandy adiabatic model of the (d,p) transfer reaction generalized to include the deuteron D-state in the presence of nonlocal nucleon-target interactions. We present exact calculations in this model and compare these to approximate (leading-order) solutions. The latter, approximate solutions can be interpreted in terms of local optical potentials, but evaluated at a shifted value of the energy in the nucleon-target system. This energy shift is increased when including the D-state contribution. We also study the expected dependence of the D-state effects on the separation energy and orbital angular momentum of the transferred nucleon. Their influence on the spectroscopic information extracted from (d,p) reactions is quantified for a particular case of astrophysical significance.
The role of the short-range part (repulsive core) of the proton-neutron ($pn$) potential in deuteron elastic breakup processes is investigated. A simplified one-range Gaussian potential and the Argonne V4 (AV4) central potential are adopted in the continuum-discretized coupled-channels (CDCC) method. The deuteron breakup cross sections calculated with these two potentials are compared. The repulsive core is found not to affect the deuteron breakup cross sections at energies from 40 MeV to 1 GeV. To understand this result, an analysis of the peripherality of the elastic breakup processes concerning the $p$-$n$ relative coordinate is performed. It is found that for the breakup processes populating the $pn$ continua with orbital angular momentum $ell$ different from 0, the reaction process is peripheral, whereas it is not for the breakup to the $ell=0$ continua (the s-wave breakup). The result of the peripherality analysis indicates that the whole spatial region of deuteron contributes to the s-wave breakup.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا