No Arabic abstract
We obtain multiple exact results on the entanglement of the exact excited states of non-integrable models we introduced in arXiv:1708.05021. We first discuss a general formalism to analytically compute the entanglement spectra of exact excited states using Matrix Product States and Matrix Product Operators and illustrate the method by reproducing a general result on single-mode excitations. We then apply this technique to analytically obtain the entanglement spectra of the infinite tower of states of the spin-$S$ AKLT models in the zero and finite energy density limits. We show that in the zero density limit, the entanglement spectra of the tower of states are multiple shifted copies of the ground state entanglement spectrum in the thermodynamic limit. We show that such a resemblance is destroyed at any non-zero energy density. Furthermore, the entanglement entropy $mathcal{S}$ of the states of the tower that are in the bulk of the spectrum is sub-thermal $mathcal{S} propto log L$, as opposed to a volume-law $mathcal{S} propto L$, thus indicating a violation of the strong Eigenstate Thermalization Hypothesis (ETH). These states are examples of what are now called many-body scars. Finally, we analytically study the finite-size effects and symmetry-protected degeneracies in the entanglement spectra of the excited states, extending the existing theory.
The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert Space Fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.
Non-equilibrium properties of quantum materials present many intriguing properties, among them athermal behavior, which violates the eigenstate thermalization hypothesis. Such behavior has primarily been observed in disordered systems. More recently, experimental and theoretical evidence for athermal eigenstates, known as quantum scars has emerged in non-integrable disorder-free models in one dimension with constrained dynamics. In this work, we show the existence of quantum scar eigenstates and investigate their dynamical properties in many simple two-body Hamiltonians with staggered interactions, involving ferromagnetic and antiferromagnetic motifs, in arbitrary dimensions. These magnetic models include simple modifications of widely studied ones (e.g., the XXZ model) on a variety of frustrated and unfrustrated lattices. We demonstrate our ideas by focusing on the two dimensional frustrated spin-1/2 kagome antiferromagnet, which was previously shown to harbor a special exactly solvable point with three-coloring ground states in its phase diagram. For appropriately chosen initial product states -- for example, those which correspond to any state of valid three-colors -- we show the presence of robust quantum revivals, which survive the addition of anisotropic terms. We also suggest avenues for future experiments which may see this effect in real materials.
Quantum many-body scar states are exceptional finite energy density eigenstates in an otherwise thermalizing system that do not satisfy the eigenstate thermalization hypothesis. We investigate the fate of exact many-body scar states under perturbations. At small system sizes, deformed scar states described by perturbation theory survive. However, we argue for their eventual thermalization in the thermodynamic limit from the finite-size scaling of the off-diagonal matrix elements. Nevertheless, we show numerically and analytically that the nonthermal properties of the scars survive for a parametrically long time in quench experiments. We present a rigorous argument that lower-bounds the thermalization time for any scar state as $t^{*} sim O(lambda^{-1/(1+d)})$, where $d$ is the spatial dimension of the system and $lambda$ is the perturbation strength.
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy, initially detected in systems subject to nearest-neighbor Rydberg blockade, the so called PXP model. While most of these special eigenstates elude an analytical description and seem to hybridize with nearby thermal eigenstates for large systems, some of them can be written as matrix product states (MPS) with size-independent bond dimension. We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size. We find that some of them are anomalously stable at first order in perturbation theory, in sharp contrast to the eigenstate thermalization hypothesis. However, this stability seems to breakdown when all orders are taken into account. We further investigate models with larger blockade radius and find a novel set of exact quantum scars, that we write down analytically and compare with the PXP exact eigenstates. We show that they exhibit the same robustness against perturbations at first order.
We revisit the $eta$-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. $eta$-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), giving rise to equally spaced towers of eigenstates in the spectrum. We generalize the original $eta$-pairing construction and show that several Hubbard-like models on arbitrary graphs exhibit SGAs, including ones with disorder and spin-orbit coupling. We further define a Restricted Spectrum Generating Algebra (RSGA) and give examples of perturbations to the Hubbard-like models that preserve an equally spaced tower of the original model as eigenstates. The states of the surviving tower exhibit a sub-thermal entanglement entropy, and we analytically obtain parameter regimes for which they lie in the bulk of the spectrum, showing that they are exact quantum many-body scars. The RSGA framework also explains the equally spaced towers of eigenstates in several well-known models of quantum scars, including the AKLT model.