No Arabic abstract
Quantum many-body scar states are exceptional finite energy density eigenstates in an otherwise thermalizing system that do not satisfy the eigenstate thermalization hypothesis. We investigate the fate of exact many-body scar states under perturbations. At small system sizes, deformed scar states described by perturbation theory survive. However, we argue for their eventual thermalization in the thermodynamic limit from the finite-size scaling of the off-diagonal matrix elements. Nevertheless, we show numerically and analytically that the nonthermal properties of the scars survive for a parametrically long time in quench experiments. We present a rigorous argument that lower-bounds the thermalization time for any scar state as $t^{*} sim O(lambda^{-1/(1+d)})$, where $d$ is the spatial dimension of the system and $lambda$ is the perturbation strength.
A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a charge density wave initial state, and theoretical works identified a set of many-body scar states showing nonthermal behavior in the Hamiltonian as potentially responsible for the atypical dynamics. In the same nonintegrable Hamiltonian, we discover several eigenstates at emph{infinite temperature} that can be represented exactly as matrix product states with finite bond dimension, for both periodic boundary conditions (two exact $E = 0$ states) and open boundary conditions (two $E = 0$ states and one each $E = pm sqrt{2}$). This discovery explicitly demonstrates violation of strong eigenstate thermalization hypothesis in this model and uncovers exact quantum many-body scar states. These states show signatures of translational symmetry breaking with period-2 bond-centered pattern, despite being in one dimension at infinite temperature. We show that the nearby many-body scar states can be well approximated as quasiparticle excitations on top of our exact $E = 0$ scar states, and propose a quasiparticle explanation of the strong oscillations observed in experiments.
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond solids despite being at effectively infinite temperature, and thus strongly violate the eigenstate thermalization hypothesis. Given a particular boundary condition, such eigenstates have integer-valued energies. Moreover, certain charge-density-wave initial states give rise to strong oscillations in the Rydberg excitation density after a quantum quench and tower-like structures in their overlaps with eigenstates.
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body scars: their sub-volume-law entanglement and equal energy spacing allow for infinitely long-lived coherent oscillations of local observables following a suitable quantum quench. While previous works on scars have interpreted such oscillations in terms of the precession of an emergent macroscopic SU(2) spin, the present model evades this description due to a set of emergent kinetic constraints in the scarred eigenstates that are absent in the underlying Hamiltonian. We also analyze the set of initial states that give rise to periodic revivals, which persist as approximate revivals on a finite timescale when the underlying model is perturbed. Remarkably, a subset of these initial states coincides with the family of area-law entangled Rokhsar-Kivelson states shown by Lesanovsky to be exact ground states for a class of models relevant to experiments on Rydberg-blockaded atomic lattices.
A quantum many-body scar system usually contains a special non-thermal subspace (approximately) decoupled from the rest of the Hilbert space. In this work, we propose a general structure called deformed symmetric spaces for the decoupled subspaces hosting quantum many-body scars, which are irreducible sectors of simple Lie groups transformed by matrix-product operators (or projected entangled pair operators), of which the entanglement entropies are proved to obey sub-volume-law scaling and thus violate the eigenstate thermalization hypothesis. A deformed symmetric space, in general, is required to have at least a U(1) sub-Lie-group symmetry to allow coherent periodic dynamics from certain low-entangled initial states. We enumerate several possible deforming transformations based on the sub-group symmetry requirement and recover many existing models whose scar states are not connected by symmetry. In particular, a two-dimensional scar model is proposed, which hosts a periodic dynamical trajectory on which all states are topologically ordered.
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.