Do you want to publish a course? Click here

Development of Slow Control Package for the Belle II Calorimeter Trigger System

71   0   0.0 ( 0 )
 Added by Cheolhun Kim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Belle II experiment at the SuperKEKB e+e- collider in KEK, Japan does start physics data-taking from early of 2018 with primary physics goal that is to probe the New Physics effect using heavy quark and lepton weak decays. During trigger and DAQ operation upon beam collision, it is important that Belle II detector (Fig. 1) status have to be monitored in a process of data-taking against an unexpected situation. Slow control system, built in the Control System Studio (CSS) which is a GUI window design tool based on Eclipse, is one of monitoring and controlling systems in Belle II operation. Database and archiver servers are connected to slow control system. Experimental parameters are downloaded to Belle II main database server which is based on PostgreSQL. Real-time results are stored in archiver server which is based on EPICS (The Experimental Physics and Industrial Control System) archiver appliances and tomcat which is open-source java servlet container. In this study, we report the development of slow control system for the Belle II electromagnetic calorimeter (ECL) trigger system.



rate research

Read More

127 - C.-H. Kim , Y. Unno , B.G. Cheon 2020
The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigger system is indispensable for the Belle II experiment to reduce the beam background events associated with high electron and positron beam currents without sacrificing the target physics-oriented events. During the Belle II operation upon beam collision, the trigger system must be consistently controlled and its status must be carefully monitored in the process of data acquisition against unexpected situations. For this purpose, we have developed a slow control system for the Belle II trigger system. Around seventy thousand configuration parameters are saved in the Belle II central database server for every run when a run starts and stops. These parameters play an essential role in offline validation of the quality of runs. Around three thousand real-time variables are stored in the Belle II main archiving server, and the trend of some of these variables are regularly used for online and offline monitoring purposes. Various operator interface tools have been prepared and used. When the configuration parameters are not correctly applied, or some of the processes are unexpectedly terminated, the slow control system detects it, stops the data-taking process, and generates an alarm. In this article, we report how we constructed the Belle II trigger slow control system, and how we successfully managed to operate during its initial stage.
118 - I.S. Lee , S.H. Kim , C.H. Kim 2018
The Belle II experiment at KEK in Japan has started real data taking from April 2018 to probe a New Physics beyond the Standard Model by measuring CP violation precisely and rare weak decays of heavy quark and lepton. The experiment is performed at the high luminosity SuperKEKB e^+ e^- collider with 80 x 10^34 cm^-2 s^-1 as an ultimate instantaneous luminosity. In order to develop and test an appropriate trigger algorithm under much higher luminosity and beam background environment than previous KEKB collider, a detail simulation study of the Belle II calorimeter trigger system is very crucial to operate Belle II Trigger and DAQ system in stable. We report preliminary results on various trigger logics and their efficiencies using physics and beam background Monte Carlo events with a Belle II Geant4-based analysis framework called Basf2.
89 - E. Won , J. B. Kim , B. R. Ko 2017
The Belle II detector at the SuperKEKB accelerator has a level 1 trigger implemented in field-programmable gate arrays. Due to the high luminosity of the beam, a trigger that effectively rejects beam induced background is required. A three dimensional tracking algorithm for the level 1 trigger that uses the Belle II central drift chamber detector response is being developed to reduce the recorded beam background while having a high efficiency for physics of interest. In this paper, we describe the three dimensional track trigger that finds and fits track parameters which we developed.
135 - Xueye Hu , Hucheng Chen , Kai Chen 2014
Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).
271 - B. Bauss , A. Brogna , V. Bucher 2018
To cope with the enhanced luminosity at the Large Hadron Collider (LHC) in 2021, the ATLAS collaboration is planning a major detector upgrade. As a part of this, the Level 1 trigger based on calorimeter data will be upgraded to exploit the fine granularity readout using a new system of Feature EXtractors (FEX), which each reconstruct different physics objects for the trigger selection. The jet FEX (jFEX) system is conceived to provide jet identification (including large area jets) and measurements of global variables within a latency budget of less then 400ns. It consists of 6 modules. A single jFEX module is an ATCA board with 4 large FPGAs of the Xilinx Ultrascale+ family, that can digest a total input data rate of ~3.6 Tb/s using up to 120 Multi Gigabit Transceiver (MGT), 24 electrical optical devices, board control and power on the mezzanines to allow flexibility in upgrading controls functions and components without affecting the main board. The 24-layers stack-up was carefully designed to preserve the signal integrity in a very densely populated high speed signal board selecting MEGTRON6 as the most suitable PCB material. This contribution reports on the design challenges and the test results of the jFEX prototypes. In particular the fully assembled final prototype has been tested up to 12.8 Gb/s in house and in integrated tests at CERN. The full jFEX system will be produced by the end of 2018 to allow for installation and commissioning to be completed before LHC restarts in March 2021.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا