No Arabic abstract
Recent development of ultrashort laser pulses allows for optical control of structural and electronic properties of complex quantum materials. The layered transition metal dichalcogenide MoTe2, which can crystalize into several different structures with distinct topological and electronic properties, provides possibilities to control or switch between different phases. In this study we report a photo-induced sub-picosecond structural transition between the type-II Weyl semimetal phase and normal semimetal phase in bulk crystalline MoTe2 by using ultrafast pump-probe and time-resolved second harmonic generation spectroscopy. The phase transition is most clearly characterized by the dramatic change of the shear oscillation mode and the intensity loss of second harmonic generation. This work opens up new possibilities for ultrafast manipulation of the topological properties of solids, enabling potentially practical applications for topological switch device with ultrafast excitations.
We present experimental evidence of an intriguing phase transition between distinct topological states in the type-II Weyl semimetal MoTe2. We observe anomalies in the Raman phonon frequencies and linewidths as well as electronic quasielastic peaks around 70 K, which, together with structural, thermodynamic measurements, and electron-phonon coupling calculations, demonstrate a temperature-induced transition between two topological phases previously identified by contrasting spectroscopic measurements. An analysis of experimental data suggests electron-phonon coupling as the main driving mechanism for the change of key topological characters in the electronic structure of MoTe2.We also find the phase transition to be sensitive to sample conditions distinguished by synthesis methods. These discoveries of temperature and material condition-dependent topological phase evolutions and transitions in MoTe2 advance the fundamental understanding of the underlying physics and enable an effective approach to tuning Weyl semimetal states for technological applications.
Photo-induced phase transitions (PIPTs) provide an ultrafast, energy-efficient way for precisely manipulating the topological properties of transition-metal ditellurides, and can be used to stabilize a topological phase in an otherwise semiconducting material. Using first-principles calculations, we demonstrate that the PIPT in monolayer MoTe$_2$ from the semiconducting 2H phase to the topological 1T$$ phase can be triggered purely by electronic excitations that soften multiple lattice vibrational modes. These softenings, driven by a Peierls-like mechanism within the conduction bands, lead to structural symmetry breaking within sub-picosecond timescales, which is shorter than the timescale of a thermally driven phase transition. The transition is predicted to be triggered by photons with energies over $1.96$,eV, with an associated excited carrier density of $3.4times10^{14}$,cm$^{-2}$, which enables a controllable phase transformation by varying the laser wavelength. Our results provide insight into the underlying physics of the phase transition in 2D transition-metal ditellurides, and show an ultrafast phase transition mechanism for manipulation of the topological properties of 2D systems.
The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present $ab$ $initio$ band calculations, electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements on the magnetic semimetal EuAs$_3$, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic (AFM) ground state at low temperature, featuring a pair of massive Dirac points, inverted bands and topological surface states on the (010) surface. Shubnikov-de Haas (SdH) oscillations in the AFM state identify nonzero Berry phase and a negative longitudinal magnetoresistance ($n$-LMR) induced by the chiral anomaly, confirming the topological nature predicted by band calculations. When magnetic moments are fully polarized by an external magnetic field, an unsaturated and extremely large magnetoresistance (XMR) of $sim$ 2$times10^5$ % at 1.8 K and 28.3 T is observed, likely arising from topological protection. Consistent with band calculations for the spin-polarized state, four new bands in quantum oscillations different from those in the AFM state are discerned, of which two are topologically protected. Nodal-line structures at the $Y$ point in the Brillouin zone (BZ) are proposed in both the spin-polarized and paramagnetic states, and the latter is proven by ARPES. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs$_3$ provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing interactions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
Cadmium arsenide Cd$_3$As$_2$ hosts massless Dirac electrons in its ambient-conditions tetragonal phase. We report X-ray diffraction and electrical resistivity measurements of Cd$_3$As$_2$ upon cycling pressure beyond the critical pressure of the tetragonal phase and back to ambient conditions. We find that at room temperature the transition between the low- and high-pressure phases results in large microstrain and reduced crystallite size both on rising and falling pressure. This leads to non-reversible electronic properties including self-doping associated with defects and a reduction of the electron mobility by an order of magnitude due to increased scattering. Our study indicates that the structural transformation is sluggish and shows a sizable hysteresis of over 1~GPa. Therefore, we conclude that the transition is first-order reconstructive, with chemical bonds being broken and rearranged in the high-pressure phase. Using the diffraction measurements we demonstrate that annealing at ~200$^circ$C greatly improves the crystallinity of the high-pressure phase. We show that its Bragg peaks can be indexed as a primitive orthorhombic lattice with a_HP~8.68 A b_HP~17.15 A and c_HP~18.58 A. The diffraction study indicates that during the structural transformation a new phase with another primitive orthorhombic structure may be also stabilized by deviatoric stress, providing an additional venue for tuning the unconventional electronic states in Cd3As2.