No Arabic abstract
Charge-density wave (CDW) is one of the most fundamental quantum phenomena in solids. Different from ordinary metals in which only single particle excitations exist, CDW also has collective excitations and can carry electric current in a collective fashion. Manipulating this collective condensation for applications has long been a goal in the condensed matter and materials community. Here we show that the CDW system of 1T-TaS2 is highly sensitive to light directly from visible down to terahertz, with current responsivities around the order of ~1 AW-1 at room temperature. Our findings open a new avenue for realizing uncooled, ultrabroadband and sensitive photoelectronics continuously down to terahertz spectral range.
The terahertz (THz) frequency range (0.1-10 THz) fills the gap between the microwave and optical parts of the electromagnetic spectrum. Recent progress in the generation and detection of the THz radiation has made it a powerful tool for fundamental research and resulted in a number of applications. However, some important components necessary to effectively manipulate THz radiation are still missing. In particular, active polarization and phase control over a broad THz band would have major applications in science and technology. It would, e.g., enable high-speed modulation for wireless communications and real-time chiral structure spectroscopy of proteins and DNA. In physics, this technology can be also used to precisely measure very weak Faraday and Kerr effects, as required, for instance, to probe the electrodynamics of topological insulators. Phase control of THz radiation has been demonstrated using various approaches. They depend either on the physical dimensions of the phase plate (and hence provide a fixed phase shift) or on a mechanically controlled time delay between optical pulses (and hence prevent fast modulation). Here, we present data that demonstrate the room temperature giant Faraday effect in HgTe can be electrically tuned over a wide frequency range (0.1-1 THz). The principle of operation is based on the field effect in a thin HgTe semimetal film. These findings together with the low scattering rate in HgTe open a new approach for high-speed amplitude and phase modulation in the THz frequency range.
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO$_3$/SrTiO$_3$/LaTiO$_3$. A combination of atomic resolution scanning transmission electron microscopy with electron energy loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.
Dielectric resonators are key components for many microwave and millimetre wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However sapphire is becoming a limiting factor for higher frequencies design. It is then important to find new candidates that can fulfil the requirements for millimetre wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, like modern telecommunication systems, radio astronomy (VLBI), and precision measurements at the quantum limit. High-resolution measurements were made of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 K and 330 K at microwave to sub-millimetre wave frequencies. The cryogenic measurements were made using a TE01{delta} dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes clear that polycrystalline diamond could be an important material to generate stable frequencies at millimetre waves.
Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons with TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically-protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.
Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-Perot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.