No Arabic abstract
We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at $1.1$ and $1.6,rm{mu m}$ with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR $100,rm{mu m}$ map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with or without $rm{mu m}$-sized very large grains and predict the DGL spectra, taking into account reddening effect of interstellar radiation field. The result shows that observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to its low density of interstellar medium.
Observational study on near-infrared (IR) scattering properties of interstellar dust grains has been limited due to its faintness. Using all-sky maps obtained from Diffuse Infrared Background Experiment (DIRBE), we investigate the scattering property from diffuse Galactic light (DGL) measurements at 1.25, 2.2, and 3.5 {mu}m in addition to our recent analyses of diffuse near-IR emission (Sano et al. 2015; Sano et al. 2016). As a result, we first find that the intensity ratios of near-IR DGL to 100 {mu}m emission increase toward low Galactic latitudes at 1.25 and 2.2 {mu}m. The derived latitude dependence can be reproduced by a scattered light model of interstellar dust with a large scattering asymmetry factor g = <cos{theta}> of $0.8^{+0.2}_{-0.3}$ at 1.25 and 2.2 {mu}m, assuming an infinite Galaxy disk as an illuminating source. The derived asymmetry factor is comparable to the values obtained in the optical, but several times larger than that expected from a recent dust model. Since possible latitude dependence of ultraviolet-excited dust emission at 1.25 and 2.2 {mu}m would reduce the large asymmetry factor to the reasonable value, our result may indicate the first detection of such an additional emission component in the diffuse interstellar medium.
Near-infrared (IR) diffuse Galactic light (DGL) consists of scattered light and thermal emission from interstellar dust grains illuminated by interstellar radiation field (ISRF). At 1.25 and 2.2um, recent observational study shows that intensity ratios of the DGL to interstellar 100um dust emission steeply decrease toward high Galactic latitudes (b). In this paper, we investigate origin(s) of the b-dependence on the basis of models of thermal emission and scattered light. Combining a thermal emission model with regional variation of the polycyclic aromatic hydrocarbon abundance observed with Planck, we show that contribution of the near-IR thermal emission component to the observed DGL is less than ~20%. We also examine the b-dependence of the scattered light, assuming a plane-parallel Galaxy with smooth distributions of the ISRF and dust density along vertical direction, and assuming a scattering phase function according to a recently developed model of interstellar dust. We normalize the scattered light intensity to the 100um intensity corrected for deviation from the cosecant-b law according to the Planck observation. As the result, the present model taking all the b-dependence of dust and ISRF properties can account for the observed b-dependence of the near-IR DGL. However, uncertainty of the correction for the 100um emission is large and other normalizing quantities may be appropriate for more robust analysis of the DGL.
We reanalyze data of near-infrared background taken by Infrared Telescope in Space (IRTS) based on up-to-date observational results of zodiacal light, integrated star light and diffuse Galactic light. We confirm the existence of residual isotropic emission, which is slightly lower but almost the same as previously reported. At wavelengths longer than 2 {mu}m, the result is fairly consistent with the recent observation with AKARI. We also perform the same analysis using a different zodiacal light model by Wright and detected residual isotropic emission that is slightly lower than that based on the original Kelsall model. Both models show the residual isotropic emission that is significantly brighter than the integrated light of galaxies.
Discovered almost a century ago, the Diffuse Interstellar Bands (DIBs) still lack convincing and comprehensive identification. Hundreds of DIBs have now been observed in the near-ultraviolet (NUV), visible and near-infrared (NIR). They are widely held to be molecular in origin, and modelling of their band profiles offers powerful constraints on molecular constants. Herschel 36, the illuminating star of the Lagoon Nebula, has been shown to possess unusually broad and asymmetric DIB profiles in the visible, and is also bright enough for NIR observation. We present here high-resolution spectroscopic observations targeting the two best-known NIR DIBs at 11797.5 and 13175 A toward this object and a nearby comparison O-star, 9 Sgr, using the GNIRS instrument on Gemini North. We show a clear detection of the 13175 A DIB in both stars, and find (i) that it does not exhibit the unusual wing structure of some of the visual DIBs in Her 36 and (ii) that the depth of the band in the two objects is very similar, also contrary to the behaviour of the visual DIBs. We discuss the implications of these results for multiple DIB carrier candidates, and the location of their carriers along the observed lines of sight.
We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is detected in the DGL spectrum at Galactic latitude |b| < 15 deg, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation but by a relation with extinction. Using this correlation, the spectral shape of DGL at optically thin region (5 deg < |b| < 15 deg) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust.