Do you want to publish a course? Click here

Spin-flavor oscillations of Dirac neutrinos in a plane electromagnetic wave

51   0   0.0 ( 0 )
 Added by Maxim Dvornikov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study spin and spin-flavor oscillations of Dirac neutrinos in a plane electromagnetic wave with circular polarization. The evolution of massive neutrinos with nonzero magnetic moments in the field of an electromagnetic wave is based on the exact solution of the Dirac-Pauli equation. We formulate the initial condition problem to describe spin-flavor oscillations in an electromagnetic wave. The transition probabilities for spin and spin-flavor oscillations are obtained. In case of spin-flavor oscillations, we analyze the transition and survival probabilities for different neutrino magnetic moments and various channels of neutrino oscillations. As an application of the obtained results, we study the possibility of existence of $ u_{emathrm{L}}to u_{mumathrm{R}}$ oscillations in an electromagnetic wave emitted by a highly magnetized neutron star. Our results are compared with findings of other authors.



rate research

Read More

60 - Maxim Dvornikov 2019
We study oscillations of Dirac neutrinos in background matter and a plane electromagnetic wave. First, we find the new exact solution of the Dirac-Pauli equation for a massive neutrino with the anomalous magnetic moment electroweakly interacting with matter under the influence of a plane electromagnetic wave with the circular polarization. We use this result to describe neutrino spin oscillations in the external fields in question. Then we consider several neutrino flavors and study neutrino spin-flavor oscillations in this system. For this purpose we formulate the initial condition problem and solve it accounting for the considered external fields. We derive the analytical expressions for the transition probabilities of spin-flavor oscillations for different types of neutrino magnetic moments. These analytical expressions are compared with the numerical solutions of the effective Schrodinger equation and with the findings of other authors. In particular, we reveal that a resonance in neutrino spin-flavor oscillations in the considered external fields cannot happen contrary to the previous claims. Finally, we briefly discuss some possible astrophysical applications.
A short overview of neutrino electromagnetic properties with focus on existed experimental constraints and future prospects is presented. The related new effect in neutrino flavour and spin-flavour oscillations in the transversal matter currents is introduced.
239 - Maxim Dvornikov 2009
We study the evolution of massive mixed Dirac and Majorana neutrinos in matter under the influence of a transversal magnetic field. The analysis is based on relativistic quantum mechanics. We solve exactly the evolution equation for relativistic neutrinos, find the neutrino wave functions, and calculate the transition probability for spin-flavor oscillations. We analyze the dependence of the transition probability on the external fields and compare the cases of Dirac and Majorana neutrinos. The evolution of Majorana particles in vacuum is also studied and correction terms to the standard oscillation formula are derived and discussed. As a possible application of our results we discuss the spin-flavor transitions in supernovae.
89 - Maxim Dvornikov 2020
Spin oscillations of neutrinos, gravitationally scattered off a black hole (BH), are studied. The cases of nonrotating and rotating BHs are analyzed. We derive the analytic expressions for the transition and survival probabilities of spin oscillations when neutrinos interact with these gravitational backgrounds. The obtained transition probabilities depend on the impact parameter, as well as the neutrino energy and the particle mass. We find that there is a possibility of spin oscillations of ultrarelativistic neutrinos scattering off a rotating BH. Then, considering the neutrino scattering off BH surrounded by background matter, we derive the effective Schrodinger equation for spin oscillations. The numerical solution of this equation is obtained in the case of a supermassive BH with a realistic accretion disk. Spin effects turn out to be negligible in the neutrino scattering in the Schwarzschild metric. In the Kerr metric, we find that the observed neutrino fluxes can be reduced almost 10% because of spin oscillations when ultrarelativistic neutrinos experience gravitational scattering. The neutrino interaction with an accretion disk results in the additional modification of the intensities of outgoing neutrino fluxes. We consider the applications of the obtained results for the neutrino astronomy.
After a brief history of two known types of neutrino mixing and oscillations, including neutrino spin and spin-flavour oscillations in the transversal magnetic field, we perform systematic study of a new phenomenon of neutrino spin and spin-flavour oscillations engendered by the transversal matter currents on the bases of the developed quantum treatment of the phenomenon. Possibilities for the resonance amplification of these new types of oscillations by the longitudinal matter currents and longitudinal magnetic fields are analyzed. We also consider modifications of the oscillation probabilities due to possible arbitrary orientation of the magnetic field vector ${bf B}$ and the matter velocity ${bf v}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا