Do you want to publish a course? Click here

Shape-from-Mask: A Deep Learning Based Human Body Shape Reconstruction from Binary Mask Images

73   0   0.0 ( 0 )
 Added by Zhongping Ji
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

3D content creation is referred to as one of the most fundamental tasks of computer graphics. And many 3D modeling algorithms from 2D images or curves have been developed over the past several decades. Designers are allowed to align some conceptual images or sketch some suggestive curves, from front, side, and top views, and then use them as references in constructing a 3D model automatically or manually. However, to the best of our knowledge, no studies have investigated on 3D human body reconstruction in a similar manner. In this paper, we propose a deep learning based reconstruction of 3D human body shape from 2D orthographic views. A novel CNN-based regression network, with two branches corresponding to frontal and lateral views respectively, is designed for estimating 3D human body shape from 2D mask images. We train our networks separately to decouple the feature descriptors which encode the body parameters from different views, and fuse them to estimate an accurate human body shape. In addition, to overcome the shortage of training data required for this purpose, we propose some significantly data augmentation schemes for 3D human body shapes, which can be used to promote further research on this topic. Extensive experimen- tal results demonstrate that visually realistic and accurate reconstructions can be achieved effectively using our algorithm. Requiring only binary mask images, our method can help users create their own digital avatars quickly, and also make it easy to create digital human body for 3D game, virtual reality, online fashion shopping.



rate research

Read More

This paper tackles the problem of estimating 3D body shape of clothed humans from single polarized 2D images, i.e. polarization images. Polarization images are known to be able to capture polarized reflected lights that preserve rich geometric cues of an object, which has motivated its recent applications in reconstructing surface normal of the objects of interest. Inspired by the recent advances in human shape estimation from single color images, in this paper, we attempt at estimating human body shapes by leveraging the geometric cues from single polarization images. A dedicated two-stage deep learning approach, SfP, is proposed: given a polarization image, stage one aims at inferring the fined-detailed body surface normal; stage two gears to reconstruct the 3D body shape of clothing details. Empirical evaluations on a synthetic dataset (SURREAL) as well as a real-world dataset (PHSPD) demonstrate the qualitative and quantitative performance of our approach in estimating human poses and shapes. This indicates polarization camera is a promising alternative to the more conventional color or depth imaging for human shape estimation. Further, normal maps inferred from polarization imaging play a significant role in accurately recovering the body shapes of clothed people.
We introduce a differential visual similarity metric to train deep neural networks for 3D reconstruction, aimed at improving reconstruction quality. The metric compares two 3D shapes by measuring distances between multi-view images differentiably rendered from the shapes. Importantly, the image-space distance is also differentiable and measures visual similarity, rather than pixel-wise distortion. Specifically, the similarity is defined by mean-squared errors over HardNet features computed from probabilistic keypoint maps of the compared images. Our differential visual shape similarity metric can be easily plugged into various 3D reconstruction networks, replacing their distortion-based losses, such as Chamfer or Earth Mover distances, so as to optimize the network weights to produce reconstructions with better structural fidelity and visual quality. We demonstrate this both objectively, using well-known shape metrics for retrieval and classification tasks that are independent from our new metric, and subjectively through a perceptual study.
139 - Shihao Zou , Xinxin Zuo , Sen Wang 2021
This paper focuses on a new problem of estimating human pose and shape from single polarization images. Polarization camera is known to be able to capture the polarization of reflected lights that preserves rich geometric cues of an object surface. Inspired by the recent applications in surface normal reconstruction from polarization images, in this paper, we attempt to estimate human pose and shape from single polarization images by leveraging the polarization-induced geometric cues. A dedicated two-stage pipeline is proposed: given a single polarization image, stage one (Polar2Normal) focuses on the fine detailed human body surface normal estimation; stage two (Polar2Shape) then reconstructs clothed human shape from the polarization image and the estimated surface normal. To empirically validate our approach, a dedicated dataset (PHSPD) is constructed, consisting of over 500K frames with accurate pose and shape annotations. Empirical evaluations on this real-world dataset as well as a synthetic dataset, SURREAL, demonstrate the effectiveness of our approach. It suggests polarization camera as a promising alternative to the more conventional RGB camera for human pose and shape estimation.
We study the association between physical appearance and family income using a novel data which has 3-dimensional body scans to mitigate the issue of reporting errors and measurement errors observed in most previous studies. We apply machine learning to obtain intrinsic features consisting of human body and take into account a possible issue of endogenous body shapes. The estimation results show that there is a significant relationship between physical appearance and family income and the associations are different across the gender. This supports the hypothesis on the physical attractiveness premium and its heterogeneity across the gender.
Cardiac MR image segmentation is essential for the morphological and functional analysis of the heart. Inspired by how experienced clinicians assess the cardiac morphology and function across multiple standard views (i.e. long- and short-axis views), we propose a novel approach which learns anatomical shape priors across different 2D standard views and leverages these priors to segment the left ventricular (LV) myocardium from short-axis MR image stacks. The proposed segmentation method has the advantage of being a 2D network but at the same time incorporates spatial context from multiple, complementary views that span a 3D space. Our method achieves accurate and robust segmentation of the myocardium across different short-axis slices (from apex to base), outperforming baseline models (e.g. 2D U-Net, 3D U-Net) while achieving higher data efficiency. Compared to the 2D U-Net, the proposed method reduces the mean Hausdorff distance (mm) from 3.24 to 2.49 on the apical slices, from 2.34 to 2.09 on the middle slices and from 3.62 to 2.76 on the basal slices on the test set, when only 10% of the training data was used.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا