Do you want to publish a course? Click here

Shortest Reconfiguration Sequence for Sliding Tokens on Spiders

122   0   0.0 ( 0 )
 Added by Duc A. Hoang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Suppose that two independent sets $I$ and $J$ of a graph with $vert I vert = vert J vert$ are given, and a token is placed on each vertex in $I$. The Sliding Token problem is to determine whether there exists a sequence of independent sets which transforms $I$ into $J$ so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. It is one of the representative reconfiguration problems that attract the attention from the viewpoint of theoretical computer science. For a yes-instance of a reconfiguration problem, finding a shortest reconfiguration sequence has a different aspect. In general, even if it is polynomial time solvable to decide whether two instances are reconfigured with each other, it can be $mathsf{NP}$-hard to find a shortest sequence between them. In this paper, we show that the problem for finding a shortest sequence between two independent sets is polynomial time solvable for spiders (i.e., trees having exactly one vertex of degree at least three).



rate research

Read More

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar.
Suppose that we are given two independent sets $I_b$ and $I_r$ of a graph such that $|I_b|=|I_r|$, and imagine that a token is placed on each vertex in $I_b$. Then, the sliding token problem is to determine whether there exists a sequence of independent sets which transforms $I_b$ into $I_r$ so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs. In this paper, we thus study the problem restricted to trees, and give the following three results: (1) the decision problem is solvable in linear time; (2) for a yes-instance, we can find in quadratic time an actual sequence of independent sets between $I_b$ and $I_r$ whose length (i.e., the number of token-slides) is quadratic; and (3) there exists an infinite family of instances on paths for which any sequence requires quadratic length.
We develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition, and as a step in the argument we give a graph partitioning algorithm with expansion and minimum degree conditions on the subgraphs induced by each part. These results extend previous work of Jenssen, Keevash, and Perkins (2019) on the Potts model and related problems in expander graphs, and of Oveis Gharan and Trevisan (2014) on partitioning into expanders.
We give polynomial-time approximation schemes for monotone maximization problems expressible in terms of distances (up to a fixed upper bound) and efficiently solvable in graphs of bounded treewidth. These schemes apply in all fractionally treewidth-fragile graph classes, a property that is true for many natural graph classes with sublinear separators. We also provide quasipolynomial-time approximation schemes for these problems in all classes with sublinear separators.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا