Do you want to publish a course? Click here

Electronic properties of Bi-doped GaAs(001) semiconductors

280   0   0.0 ( 0 )
 Added by Ernesto Placidi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite its potential in the fields of optoelectronics and topological insulators, experimental electronic band structure studies of Bi-doped GaAs are scarce. The reason is the complexity of growth which tends to leave bulk and in particular surface properties in an undefined state. Here we present an in depth investigation of structural and electronic properties of GaAsBi epilayers grown by molecular beam epitaxy with high (001) crystalline order and well-defined surface structures evident from low-energy electron diffraction. X-ray and ultraviolet photoemission spectrocopy as well as angle-resolved photoemission data at variable photon energies allows to disentangle a Bi-rich surface layer with $(1times3)$ symmetry from the effects of Bi atoms incorporated in the GaAs bulk matrix. The influence of Bi concentrations up to $approx 1$% integrated in the GaAs bulk are visible in angle-resolved photoemission spectra after mild ion bombardment and subsequent annealing steps. Interpretation of our results is obtained via density functional theory simulations of bulk and $beta 2(2times 4)$ reconstructed slab geometries with and without Bi. Bi-induced energy shifts in the dispersion of GaAs heavy and light hole bulk bands are evident both in experiment and theory, which are relevant for modulations in the optical band gap and thus optoelectronic applications.



rate research

Read More

We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.
180 - Zhuhua Zhang , , Wanlin Guo 2009
We show by first-principles calculations that the electronic properties of zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chains across their width adsorbed perpendicularly to the Si dimer rows possess an energy gap, while wider Z-GNRs are metallic due to width-dependent interface hybridization. The Z-GNRs can be metastably adsorbed parallel to the Si dimer rows, but show uniform metallic nature independent of ribbon width due to adsorption induced dangling-bond states on the Si surface.
By carrying out Monte Carlo simulations based on the two-species atomic-scale kinetic growth model of GaAs(001) homoepitaxy and comparing the results with scanning tunneling microscope images, we show that initial growing islands undergo the structural transformation before adopting the proper beta2(2x4) reconstruction.
We study the underlying chemical, electronic and magnetic properties of a number of magnetite based thin films. The main focus is placed onto NiO/Fe$_3$O$_4$(001) bilayers grown on MgO(001) and Nb-SrTiO$_3$(001) substrates. We compare the results with those obtained on pure Fe$_3$O$_4$(001) thin films. It is found that the magnetite layers are oxidized and Fe$^{3+}$ dominates at the surfaces due to maghemite ($gamma$-Fe$_2$O$_3$) formation, which decreases with increasing magnetite layer thickness. From a layer thickness of around 20 nm on the cationic distribution is close to that of stoichiometric Fe$_3$O$_4$. At the interface between NiO and Fe$_3$O$_4$ we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe$_2$O$_4$ interlayer can be excluded by means of XMCD. Magneto optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and a 45$^{circ}$ rotated magnetic easy axis. We discuss the spin magnetic moments of the magnetite layers and find that the moment increases with increasing thin film thickness. At low thickness the NiO/Fe$_3$O$_4$ films grown on Nb-SrTiO$_3$ exhibits a significantly decreased spin magnetic moments. A thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.
The electronic and magnetic properties of ferromagnetic doped manganites are investigated by means of model tight-binding and textit{ab initio} self-interaction corrected local spin density approximation calculations. It is found that the surface alone by breaking the cubic symmetry induces a difference in the occupation of the two $e_{g}$ orbitals at the surface. With textit{ab initio} calculations we found surface localisation of one orbital and hence a change in the Mn valency from four in the bulk to three at the sub-surface. Different surface or disordered interface induced localisation of the orbitals are considered too with respect to the nature and the strength of the magnetic exchange coupling between the surface/interface and the bulk-like region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا