Do you want to publish a course? Click here

Characterizing multiple instance datasets

61   0   0.0 ( 0 )
 Added by Veronika Cheplygina
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In many pattern recognition problems, a single feature vector is not sufficient to describe an object. In multiple instance learning (MIL), objects are represented by sets (emph{bags}) of feature vectors (emph{instances}). This requires an adaptation of standard supervised classifiers in order to train and evaluate on these bags of instances. Like for supervised classification, several benchmark datasets and numerous classifiers are available for MIL. When performing a comparison of different MIL classifiers, it is important to understand the differences of the datasets, used in the comparison. Seemingly different (based on factors such as dimensionality) datasets may elicit very similar behaviour in classifiers, and vice versa. This has implications for what kind of conclusions may be drawn from the comparison results. We aim to give an overview of the variability of available benchmark datasets and some popular MIL classifiers. We use a dataset dissimilarity measure, based on the differences between the ROC-curves obtained by different classifiers, and embed this dataset dissimilarity matrix into a low-dimensional space. Our results show that conceptually similar datasets can behave very differently. We therefore recommend examining such dataset characteristics when making comparisons between existing and new MIL classifiers. The datasets are available via Figshare at url{https://bit.ly/2K9iTja}.



rate research

Read More

131 - Jinwu Liu , Yao Lu , Tianfei Zhou 2015
Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifiers by maximizing the bag likelihood. In this paper, we extend this idea towards incorporating the instance significance estimation into the online MILBoost framework. First, instead of treating all instances equally, with each instance we associate a significance-coefficient that represents its contribution to the bag likelihood. The coefficients are estimated by a simple Bayesian formula that jointly considers the predictions from several standard MILBoost classifiers. Next, we follow the online boosting framework, and propose a new criterion for the selection of weak classifiers. Experiments with challenging public datasets show that the proposed method outperforms both existing MIL based and boosting based trackers.
We propose a deep network that can be trained to tackle image reconstruction and classification problems that involve detection of multiple object instances, without any supervision regarding their whereabouts. The network learns to extract the most significant top-K patches, and feeds these patches to a task-specific network -- e.g., auto-encoder or classifier -- to solve a domain specific problem. The challenge in training such a network is the non-differentiable top-K selection process. To address this issue, we lift the training optimization problem by treating the result of top-K selection as a slack variable, resulting in a simple, yet effective, multi-stage training. Our method is able to learn to detect recurrent structures in the training dataset by learning to reconstruct images. It can also learn to localize structures when only knowledge on the occurrence of the object is provided, and in doing so it outperforms the state-of-the-art.
266 - Tianning Yuan 2021
Despite the substantial progress of active learning for image recognition, there still lacks an instance-level active learning method specified for object detection. In this paper, we propose Multiple Instance Active Object Detection (MI-AOD), to select the most informative images for detector training by observing instance-level uncertainty. MI-AOD defines an instance uncertainty learning module, which leverages the discrepancy of two adversarial instance classifiers trained on the labeled set to predict instance uncertainty of the unlabeled set. MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances, and estimates the image uncertainty by re-weighting instances in a multiple instance learning (MIL) fashion. Iterative instance uncertainty learning and re-weighting facilitate suppressing noisy instances, toward bridging the gap between instance uncertainty and image-level uncertainty. Experiments validate that MI-AOD sets a solid baseline for instance-level active learning. On commonly used object detection datasets, MI-AOD outperforms state-of-the-art methods with significant margins, particularly when the labeled sets are small. Code is available at https://github.com/yuantn/MI-AOD.
We present an interesting and challenging dataset that features a large number of scenes with messy tables captured from multiple camera views. Each scene in this dataset is highly complex, containing multiple object instances that could be identical, stacked and occluded by other instances. The key challenge is to associate all instances given the RGB image of all views. The seemingly simple task surprisingly fails many popular methods or heuristics that we assume good performance in object association. The dataset challenges existing methods in mining subtle appearance differences, reasoning based on contexts, and fusing appearance with geometric cues for establishing an association. We report interesting findings with some popular baselines, and discuss how this dataset could help inspire new problems and catalyse more robust formulations to tackle real-world instance association problems. Project page: $href{https://caizhongang.github.io/projects/MessyTable/}{text{MessyTable}}$
Generating natural language descriptions for in-the-wild videos is a challenging task. Most state-of-the-art methods for solving this problem borrow existing deep convolutional neural network (CNN) architectures (AlexNet, GoogLeNet) to extract a visual representation of the input video. However, these deep CNN architectures are designed for single-label centered-positioned object classification. While they generate strong semantic features, they have no inherent structure allowing them to detect multiple objects of different sizes and locations in the frame. Our paper tries to solve this problem by integrating the base CNN into several fully convolutional neural networks (FCNs) to form a multi-scale network that handles multiple receptive field sizes in the original image. FCNs, previously applied to image segmentation, can generate class heat-maps efficiently compared to sliding window mechanisms, and can easily handle multiple scales. To further handle the ambiguity over multiple objects and locations, we incorporate the Multiple Instance Learning mechanism (MIL) to consider objects in different positions and at different scales simultaneously. We integrate our multi-scale multi-instance architecture with a sequence-to-sequence recurrent neural network to generate sentence descriptions based on the visual representation. Ours is the first end-to-end trainable architecture that is capable of multi-scale region processing. Evaluation on a Youtube video dataset shows the advantage of our approach compared to the original single-scale whole frame CNN model. Our flexible and efficient architecture can potentially be extended to support other video processing tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا