No Arabic abstract
Conventional spin-singlet superconductivity that deeply penetrates into ferromagnets is typically killed by the exchange interaction, which destroys the spin-singlet pairs. Under certain circumstances, however, superconductivity survives this interaction by adopting the pairing behavior of spin triplets. The necessary conditions for the emergence of triplet pairs are well-understood, owing to significant developments in theoretical frameworks and experiments. The long-term challenges to inducing superconductivity in magnetic semiconductors, however, involve difficulties in observing the finite supercurrent, even though the generation of superconductivity in host materials has been well-established and extensively examined. Here, we show the first evidence of proximity-induced superconductivity in a ferromagnetic semiconductor (In, Fe)As. The supercurrent reached a distance scale of $sim 1~mu$m, which is comparable to the proximity range in two-dimensional electrons at surfaces of pure InAs. Given the long range of its proximity effects and its response to magnetic fields, we conclude that spin-triplet pairing is dominant in proximity superconductivity. Therefore, this progress in ferromagnetic semiconductors is a breakthrough in semiconductor physics involving unconventional superconducting pairing.
We studied the proximity effect between a superconductor (Nb) and a diluted ferromagnetic alloy (CuNi) in a bilayer geometry. We measured the local density of states on top of the ferromagnetic layer, which thickness varies on each sample, with a very low temperature Scanning Tunneling Microscope. The measured spectra display a very high homogeneity. The analysis of the experimental data shows the need to take into account an additional scattering mechanism. By including in the Usadel equations the effect of the spin relaxation in the ferromagnetic alloy, we obtain a good description of the experimental data.
We present an experimental study of the transport properties of a ferromagnetic metallic wire (Co) in metallic contact with a superconductor (Al). As the temperature is decreased below the Al superconducting transition, the Co resistance exhibits a significant dependence on both temperature and voltage. The differential resistance data show that the decay length for the proximity effect is much larger than we would simply expect from the exchange field of the ferromagnet.
We fabricated a hybrid structure in which cobalt and permalloy micromagnets produce a local in-plane spin-dependent potential barrier for high-mobility electrons at the GaAs/AlGaAs interface. Spin effects are observed in ballistic transport in the tens millitesla range of the external field, and are attributed to switching between Zeeman and Stern-Gerlach modes -- the former dominating at low electron densities.
Ferromagnetic proximity effect is studied in InAs nanowire (NW) based quantum dots (QD) strongly coupled to a ferromagnetic (F) and a superconducting (S) lead. The influence of the F lead is detected through the splitting of the spin-1/2 Kondo resonance. We show that the F lead induces a local exchange field on the QD, which has varying amplitude and a sign depending on the charge states. The interplay of the F and S correlations generates an exchange field related supgap feature. This novel mini-gap allows now the visualization of the exchange field also in even charge states
Semiconductor-based Josephson junctions provide a platform for studying proximity effect due to the possibility of tuning junction properties by gate voltage and large-scale fabrication of complex Josephson circuits. Recently Josephson junctions using InAs weak link with epitaxial aluminum contact have improved the product of normal resistance and critical current, $I_cR_N$, in addition to fabrication process reliability. Here we study similar devices with epitaxial contact and find large supercurrent and substantial product of $I_cR_N$ in our junctions. However we find a striking difference when we compare these samples with higher mobility samples in terms of product of excess current and normal resistance, $I_{ex}R_N$. The excess current is negligible in lower mobility devices while it is substantial and independent of gate voltage and junction length in high mobility samples. This indicates that even though both sample types have epitaxial contacts only the high-mobility one has a high transparency interface. In the high mobility short junctions, we observe values of $I_cR_N/Delta sim 2.2$ and $I_{ex}R_N/Delta sim 1.5$ in semiconductor weak links.