Do you want to publish a course? Click here

Polynomial Preconditioned Arnoldi

239   0   0.0 ( 0 )
 Added by Mark Embree
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Polynomial preconditioning can improve the convergence of the Arnoldi method for computing eigenvalues. Such preconditioning significantly reduces the cost of orthogonalization; for difficult problems, it can also reduce the number of matrix-vector products. Parallel computations can particularly benefit from the reduction of communication-intensive operations. The GMRES algorithm provides a simple and effective way of generating the preconditioning polynomial. For some problems high degree polynomials are especially effective, but they can lead to stability problems that must be mitigated. A two-level double polynomial preconditioning strategy provides an effective way to generate high-degree preconditioners.



rate research

Read More

Polynomial preconditioning with the GMRES minimal residual polynomial has the potential to greatly reduce orthogonalization costs, making it useful for communication reduction. We implement polynomial preconditioning in the Belos package from Trilinos and show how it can be effective in both serial and parallel implementations. We further show it is a communication-avoiding technique and is a viable option to CA-GMRES for large-scale parallel computing.
It is well-established that any non-increasing convergence curve is possible for GMRES and a family of pairs $(A,b)$ can be constructed for which GMRES exhibits a given convergence curve with $A$ having arbitrary spectrum. No analog of this result has been established for block GMRES, wherein multiple right-hand sides are considered. By reframing the problem as a single linear system over a ring of square matrices, we develop convergence results for block Arnoldi and block GMRES. In particular, we show what convergence behavior is admissible for block GMRES and how the matrices and right-hand sides producing any admissible behavior can be constructed. Moreover, we show that the convergence of the block Arnoldi method for eigenvalue approximation can be almost fully independent of the convergence of block GMRES for the same coefficient matrix and the same starting vectors.
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations that arise from the discretization of linear well-posed problems, such as Dirichlet boundary value problems for elliptic partial differential equations. The method is also applied to iteratively solve linear systems of equations that are obtained by discretizing linear ill-posed problems, such as many inverse problems. However, GMRES does not always perform well when applied to the latter kind of problems. This paper seeks to shed some light on reasons for the poor performance of GMRES in certain situations, and discusses some remedies based on specific kinds of preconditioning. The standard implementation of GMRES is based on the Arnoldi process, which also can be used to define a solution subspace for Tikhonov or TSVD regularization, giving rise to the Arnoldi-Tikhonov and Arnoldi-TSVD methods, respectively. The performance of the GMRES, the Arnoldi-Tikhonov, and the Arnoldi-TSVD methods is discussed. Numerical examples illustrate properties of these methods.
Properties of Superiorized Preconditioned Conjugate Gradient (SupPCG) algorithms in image reconstruction from projections are examined. Least squares (LS) is usually chosen for measuring data-inconsistency in these inverse problems. Preconditioned Conjugate Gradient algorithms are fast methods for finding an LS solution. However, for ill-posed problems, such as image reconstruction, an LS solution may not provide good image quality. This can be taken care of by superiorization. A superiorized algorithm leads to images with the value of a secondary criterion (a merit function such as the total variation) improved as compared to images with similar data-inconsistency obtained by the algorithm without superiorization. Numerical experimentation shows that SupPCG can lead to high-quality reconstructions within a remarkably short time. A theoretical analysis is also provided.
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spectral analysis focuses on the case of matrix sequences related to FE approximations on uniform structured meshes, by referring to spectral tools derived from Toeplitz theory. In such a setting, if the problem is coercive, and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequence shows a strong clustering at unity, i.e., a superlinear preconditioning sequence is obtained. Under the same assumptions, the optimality of the PHSS method is proved and some numerical experiments confirm the theoretical results. Tests on unstructured meshes are also presented, showing the some convergence behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا