Do you want to publish a course? Click here

Ontology Alignment in the Biomedical Domain Using Entity Definitions and Context

111   0   0.0 ( 0 )
 Added by Lucy Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Ontology alignment is the task of identifying semantically equivalent entities from two given ontologies. Different ontologies have different representations of the same entity, resulting in a need to de-duplicate entities when merging ontologies. We propose a method for enriching entities in an ontology with external definition and context information, and use this additional information for ontology alignment. We develop a neural architecture capable of encoding the additional information when available, and show that the addition of external data results in an F1-score of 0.69 on the Ontology Alignment Evaluation Initiative (OAEI) largebio SNOMED-NCI subtask, comparable with the entity-level matchers in a SOTA system.



rate research

Read More

We introduce BioCoM, a contrastive learning framework for biomedical entity linking that uses only two resources: a small-sized dictionary and a large number of raw biomedical articles. Specifically, we build the training instances from raw PubMed articles by dictionary matching and use them to train a context-aware entity linking model with contrastive learning. We predict the normalized biomedical entity at inference time through a nearest-neighbor search. Results found that BioCoM substantially outperforms state-of-the-art models, especially in low-resource settings, by effectively using the context of the entities.
Despite the widespread success of self-supervised learning via masked language models (MLM), accurately capturing fine-grained semantic relationships in the biomedical domain remains a challenge. This is of paramount importance for entity-level tasks such as entity linking where the ability to model entity relations (especially synonymy) is pivotal. To address this challenge, we propose SapBERT, a pretraining scheme that self-aligns the representation space of biomedical entities. We design a scalable metric learning framework that can leverage UMLS, a massive collection of biomedical ontologies with 4M+ concepts. In contrast with previous pipeline-based hybrid systems, SapBERT offers an elegant one-model-for-all solution to the problem of medical entity linking (MEL), achieving a new state-of-the-art (SOTA) on six MEL benchmarking datasets. In the scientific domain, we achieve SOTA even without task-specific supervision. With substantial improvement over various domain-specific pretrained MLMs such as BioBERT, SciBERTand and PubMedBERT, our pretraining scheme proves to be both effective and robust.
Semantic embedding has been widely investigated for aligning knowledge graph (KG) entities. Current methods have explored and utilized the graph structure, the entity names and attributes, but ignore the ontology (or ontological schema) which contains critical meta information such as classes and their membership relationships with entities. In this paper, we propose an ontology-guided entity alignment method named OntoEA, where both KGs and their ontologies are jointly embedded, and the class hierarchy and the class disjointness are utilized to avoid false mappings. Extensive experiments on seven public and industrial benchmarks have demonstrated the state-of-the-art performance of OntoEA and the effectiveness of the ontologies.
Injecting external domain-specific knowledge (e.g., UMLS) into pretrained language models (LMs) advances their capability to handle specialised in-domain tasks such as biomedical entity linking (BEL). However, such abundant expert knowledge is available only for a handful of languages (e.g., English). In this work, by proposing a novel cross-lingual biomedical entity linking task (XL-BEL) and establishing a new XL-BEL benchmark spanning 10 typologically diverse languages, we first investigate the ability of standard knowledge-agnostic as well as knowledge-enhanced monolingual and multilingual LMs beyond the standard monolingual English BEL task. The scores indicate large gaps to English performance. We then address the challenge of transferring domain-specific knowledge in resource-rich languages to resource-poor ones. To this end, we propose and evaluate a series of cross-lingual transfer methods for the XL-BEL task, and demonstrate that general-domain bitext helps propagate the available English knowledge to languages with little to no in-domain data. Remarkably, we show that our proposed domain-specific transfer methods yield consistent gains across all target languages, sometimes up to 20 Precision@1 points, without any in-domain knowledge in the target language, and without any in-domain parallel data.
Biomedical entity linking is the task of identifying mentions of biomedical concepts in text documents and mapping them to canonical entities in a target thesaurus. Recent advancements in entity linking using BERT-based models follow a retrieve and rerank paradigm, where the candidate entities are first selected using a retriever model, and then the retrieved candidates are ranked by a reranker model. While this paradigm produces state-of-the-art results, they are slow both at training and test time as they can process only one mention at a time. To mitigate these issues, we propose a BERT-based dual encoder model that resolves multiple mentions in a document in one shot. We show that our proposed model is multiple times faster than existing BERT-based models while being competitive in accuracy for biomedical entity linking. Additionally, we modify our dual encoder model for end-to-end biomedical entity linking that performs both mention span detection and entity disambiguation and out-performs two recently proposed models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا