Do you want to publish a course? Click here

Meta-Learning by the Baldwin Effect

51   0   0.0 ( 0 )
 Added by Jakub Sygnowski
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The scope of the Baldwin effect was recently called into question by two papers that closely examined the seminal work of Hinton and Nowlan. To this date there has been no demonstration of its necessity in empirically challenging tasks. Here we show that the Baldwin effect is capable of evolving few-shot supervised and reinforcement learning mechanisms, by shaping the hyperparameters and the initial parameters of deep learning algorithms. Furthermore it can genetically accommodate strong learning biases on the same set of problems as a recent machine learning algorithm called MAML Model Agnostic Meta-Learning which uses second-order gradients instead of evolution to learn a set of reference parameters (initial weights) that can allow rapid adaptation to tasks sampled from a distribution. Whilst in simple cases MAML is more data efficient than the Baldwin effect, the Baldwin effect is more general in that it does not require gradients to be backpropagated to the reference parameters or hyperparameters, and permits effectively any number of gradient updates in the inner loop. The Baldwin effect learns strong learning dependent biases, rather than purely genetically accommodating fixed behaviours in a learning independent manner.



rate research

Read More

Quality-Diversity (QD) algorithms evolve behaviourally diverse and high-performing solutions. To illuminate the elite solutions for a space of behaviours, QD algorithms require the definition of a suitable behaviour space. If the behaviour space is high-dimensional, a suitable dimensionality reduction technique is required to maintain a limited number of behavioural niches. While current methodologies for automated behaviour spaces focus on changing the geometry or on unsupervised learning, there remains a need for customising behavioural diversity to a particular meta-objective specified by the end-user. In the newly emerging framework of QD Meta-Evolution, or QD-Meta for short, one evolves a population of QD algorithms, each with different algorithmic and representational characteristics, to optimise the algorithms and their resulting archives to a user-defined meta-objective. Despite promising results compared to traditional QD algorithms, QD-Meta has yet to be compared to state-of-the-art behaviour space automation methods such as Centroidal Voronoi Tessellations Multi-dimensional Archive of Phenotypic Elites Algorithm (CVT-MAP-Elites) and Autonomous Robots Realising their Abilities (AURORA). This paper performs an empirical study of QD-Meta on function optimisation and multilegged robot locomotion benchmarks. Results demonstrate that QD-Meta archives provide improved average performance and faster adaptation to a priori unknown changes to the environment when compared to CVT-MAP-Elites and AURORA. A qualitative analysis shows how the resulting archives are tailored to the meta-objectives provided by the end-user.
In robotics, methods and softwares usually require optimizations of hyperparameters in order to be efficient for specific tasks, for instance industrial bin-picking from homogeneous heaps of different objects. We present a developmental framework based on long-term memory and reasoning modules (Bayesian Optimisation, visual similarity and parameters bounds reduction) allowing a robot to use meta-learning mechanism increasing the efficiency of such continuous and constrained parameters optimizations. The new optimization, viewed as a learning for the robot, can take advantage of past experiences (stored in the episodic and procedural memories) to shrink the search space by using reduced parameters bounds computed from the best optimizations realized by the robot with similar tasks of the new one (e.g. bin-picking from an homogenous heap of a similar object, based on visual similarity of objects stored in the semantic memory). As example, we have confronted the system to the constrained optimizations of 9 continuous hyperparameters for a professional software (Kamido) in industrial robotic arm bin-picking tasks, a step that is needed each time to handle correctly new object. We used a simulator to create bin-picking tasks for 8 different objects (7 in simulation and one with real setup, without and with meta-learning with experiences coming from other similar objects) achieving goods results despite a very small optimization budget, with a better performance reached when meta-learning is used (84.3% vs 78.9% of success overall, with a small budget of 30 iterations for each optimization) for every object tested (p-value=0.036).
An automated technique has recently been proposed to transfer learning in the hierarchical Bayesian optimization algorithm (hBOA) based on distance-based statistics. The technique enables practitioners to improve hBOA efficiency by collecting statistics from probabilistic models obtained in previous hBOA runs and using the obtained statistics to bias future hBOA runs on similar problems. The purpose of this paper is threefold: (1) test the technique on several classes of NP-complete problems, including MAXSAT, spin glasses and minimum vertex cover; (2) demonstrate that the technique is effective even when previous runs were done on problems of different size; (3) provide empirical evidence that combining transfer learning with other efficiency enhancement techniques can often yield nearly multiplicative speedups.
132 - Zeyu Zhang , Guisheng Yin 2020
We propose a general agent population learning system, and on this basis, we propose lineage evolution reinforcement learning algorithm. Lineage evolution reinforcement learning is a kind of derivative algorithm which accords with the general agent population learning system. We take the agents in DQN and its related variants as the basic agents in the population, and add the selection, mutation and crossover modules in the genetic algorithm to the reinforcement learning algorithm. In the process of agent evolution, we refer to the characteristics of natural genetic behavior, add lineage factor to ensure the retention of potential performance of agent, and comprehensively consider the current performance and lineage value when evaluating the performance of agent. Without changing the parameters of the original reinforcement learning algorithm, lineage evolution reinforcement learning can optimize different reinforcement learning algorithms. Our experiments show that the idea of evolution with lineage improves the performance of original reinforcement learning algorithm in some games in Atari 2600.
We introduce a new supervised learning algorithm based to train spiking neural networks for classification. The algorithm overcomes a limitation of existing multi-spike learning methods: it solves the problem of interference between interacting output spikes during a learning trial. This problem of learning interference causes learning performance in existing approaches to decrease as the number of output spikes increases, and represents an important limitation in existing multi-spike learning approaches. We address learning interference by introducing a novel mechanism to balance the magnitudes of weight adjustments during learning, which in theory allows every spike to simultaneously converge to their desired timings. Our results indicate that our method achieves significantly higher memory capacity and faster convergence compared to existing approaches for multi-spike classification. In the ubiquitous Iris and MNIST datasets, our algorithm achieves competitive predictive performance with state-of-the-art approaches.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا