Do you want to publish a course? Click here

Multiparameter estimation via an ensemble of spinor atoms

117   0   0.0 ( 0 )
 Added by Min Zhuang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiparameter estimation, which aims to simultaneously determine multiple parameters in the same measurement procedure, attracts extensive interests in measurement science and technologies. Here, we propose a multimode many-body quantum interferometry for simultaneously estimating linear and quadratic Zeeman coefficients via an ensemble of spinor atoms. Different from the scheme with individual atoms, by using an $N$-atom multimode GHZ state, the measurement precisions of the two parameters can simultaneously attain the Heisenberg limit, and they respectively depend on the hyperfine spin number $F$ in the form of $Delta p propto 1/(FN)$ and $Delta q propto 1/(F^2N)$. Moreover, the simultaneous estimation can provide better precision than the individual estimation. Further, by taking a three-mode interferometry with Bose condensed spin-1 atoms for an example, we show how to perform the simultaneous estimation of $p$ and $q$. Our scheme provides a novel paradigm for implementing multiparameter estimation with multimode quantum correlated states.



rate research

Read More

It was suggested in Ref. [Phys. Rev. Lett. 114, 170802] that optical networks with relatively inexpensive overhead---single photon Fock states, passive optical elements, and single photon detection---can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n < 7). A similar case was made in Ref. [Phys. Rev. Lett. 111, 070403] for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramer-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
Simultaneous quantum estimation of multiple parameters has recently become essential in quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in noiseless environments can beat the standard quantum limit that every classical sensor is bounded by, it is unclear whether the quantum sensor has an advantage over the classical one under realistic noise. In this work, we present a framework of the simultaneous estimation of multiple parameters with quantum sensors in a certain noisy environment. Our multiple parameters to be estimated are three components of an external magnetic field, and we consider the noise that causes only dephasing. We show that there is an optimal sensing time in the noisy environment and the sensitivity can beat the standard quantum limit when the noisy environment is non-Markovian.
The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenbergs uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot be jointly performed. We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error in the context of measurement uncertainty relations. Taking this correspondence relationship as a bridge, we incorporate Heisenbergs uncertainty principle into quantum multiparameter estimation by giving a tradeoff relation between the measurement inaccuracies for estimating different parameters. For pure quantum states, this tradeoff relation is tight, so it can reveal the true quantum limits on individual estimation errors in such cases. We apply our approach to derive the tradeoff between attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states and obtain the joint measurements attaining the tradeoff relation. We also show that our approach can be readily used to derive the tradeoff between the errors of jointly estimating the phase shift and phase diffusion without explicitly parameterizing quantum measurements.
Light is known to exert a pushing force through the radiation pressure on any surface it is incident upon, via the transfer of momentum from the light to the surface. For an atom, the interaction with light can lead to both absorption as well as emission of photons, leading to repulsive and attractive forces, respectively. For classical light, these two processes occur at the same rates. Therefore, a thermal ensemble of atoms at a finite temperature always experiences a net pushing force. In this paper, we show that when treated quantum mechanically the pulsed electromagnetic field interacting with the thermal ensemble of atoms leads to unequal transition rates, again resulting in a non-zero net force. However, the signature and the magnitude of the force depends upon the intensity of the light, the number of atoms, and the initial temperature of the ensemble. Thus, even at finite temperature, controlling the parameters of the electromagnetic pulse and the number of particles in the ensemble, the net force can be changed from repulsive to attractive, generating negative radiation pressure in the process. Quite counterintuitively, this negative radiation pressure arising out of pure quantum character of light gets stronger for higher temperatures.
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions between the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا