Do you want to publish a course? Click here

iCLAP: Shape Recognition by Combining Proprioception and Touch Sensing

65   0   0.0 ( 0 )
 Added by Shan Luo Dr
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

For humans, both the proprioception and touch sensing are highly utilized when performing haptic perception. However, most approaches in robotics use only either proprioceptive data or touch data in haptic object recognition. In this paper, we present a novel method named Iterative Closest Labeled Point (iCLAP) to link the kinesthetic cues and tactile patterns fundamentally and also introduce its extensions to recognize object shapes. In the training phase, the iCLAP first clusters the features of tactile readings into a codebook and assigns these features with distinct label numbers. A 4D point cloud of the object is then formed by taking the label numbers of the tactile features as an additional dimension to the 3D sensor positions; hence, the two sensing modalities are merged to achieve a synthesized perception of the touched object. Furthermore, we developed and validated hybrid fusion strategies, product based and weighted sum based, to combine decisions obtained from iCLAP and single sensing modalities. Extensive experimentation demonstrates a dramatic improvement of object recognition using the proposed methods and it shows great potential to enhance robot perception ability.



rate research

Read More

Legged robot navigation in extreme environments can hinder the use of cameras and laser scanners due to darkness, air obfuscation or sensor damage. In these conditions, proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive localization algorithm which fuses information from both geometry and terrain class, to localize a legged robot within a prior map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot forces. Then, a Monte Carlo-based estimator fuses this terrain class probability with the geometric information of the foot contact points. Results are demonstrated showing this approach operating online and onboard a ANYmal B300 quadruped robot traversing a series of terrain courses with different geometries and terrain types over more than 1.2km. The method keeps the localization error below 20cm using only the information coming from the feet, IMU, and joints of the quadruped.
Disturbance estimation for Micro Aerial Vehicles (MAVs) is crucial for robustness and safety. In this paper, we use novel, bio-inspired airflow sensors to measure the airflow acting on a MAV, and we fuse this information in an Unscented Kalman Filter (UKF) to simultaneously estimate the three-dimensional wind vector, the drag force, and other interaction forces (e.g. due to collisions, interaction with a human) acting on the robot. To this end, we present and compare a fully model-based and a deep learning-based strategy. The model-based approach considers the MAV and airflow sensor dynamics and its interaction with the wind, while the deep learning-based strategy uses a Long Short-Term Memory (LSTM) neural network to obtain an estimate of the relative airflow, which is then fused in the proposed filter. We validate our methods in hardware experiments, showing that we can accurately estimate relative airflow of up to 4 m/s, and we can differentiate drag and interaction force.
We present a novel approach to object classification and detection which requires minimal supervision and which combines visual texture cues and shape information learned from freely available unlabeled web search results. The explosion of visual data on the web can potentially make visual examples of almost any object easily accessible via web search. Previous unsupervised methods have utilized either large scale sources of texture cues from the web, or shape information from data such as crowdsourced CAD models. We propose a two-stream deep learning framework that combines these cues, with one stream learning visual texture cues from image search data, and the other stream learning rich shape information from 3D CAD models. To perform classification or detection for a novel image, the predictions of the two streams are combined using a late fusion scheme. We present experiments and visualizations for both tasks on the standard benchmark PASCAL VOC 2007 to demonstrate that texture and shape provide complementary information in our model. Our method outperforms previous web image based models, 3D CAD model based approaches, and weakly supervised models.
When a toddler is presented a new toy, their instinctual behaviour is to pick it upand inspect it with their hand and eyes in tandem, clearly searching over its surface to properly understand what they are playing with. At any instance here, touch provides high fidelity localized information while vision provides complementary global context. However, in 3D shape reconstruction, the complementary fusion of visual and haptic modalities remains largely unexplored. In this paper, we study this problem and present an effective chart-based approach to multi-modal shape understanding which encourages a similar fusion vision and touch information.To do so, we introduce a dataset of simulated touch and vision signals from the interaction between a robotic hand and a large array of 3D objects. Our results show that (1) leveraging both vision and touch signals consistently improves single-modality baselines; (2) our approach outperforms alternative modality fusion methods and strongly benefits from the proposed chart-based structure; (3) there construction quality increases with the number of grasps provided; and (4) the touch information not only enhances the reconstruction at the touch site but also extrapolates to its local neighborhood.
Touch sensing is widely acknowledged to be important for dexterous robotic manipulation, but exploiting tactile sensing for continuous, non-prehensile manipulation is challenging. General purpose control techniques that are able to effectively leverage tactile sensing as well as accurate physics models of contacts and forces remain largely elusive, and it is unclear how to even specify a desired behavior in terms of tactile percepts. In this paper, we take a step towards addressing these issues by combining high-resolution tactile sensing with data-driven modeling using deep neural network dynamics models. We propose deep tactile MPC, a framework for learning to perform tactile servoing from raw tactile sensor inputs, without manual supervision. We show that this method enables a robot equipped with a GelSight-style tactile sensor to manipulate a ball, analog stick, and 20-sided die, learning from unsupervised autonomous interaction and then using the learned tactile predictive model to reposition each object to user-specified configurations, indicated by a goal tactile reading. Videos, visualizations and the code are available here: https://sites.google.com/view/deeptactilempc
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا