Do you want to publish a course? Click here

Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition

129   0   0.0 ( 0 )
 Added by Fabrice Gerbier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of a two-component Bose-Einstein condensate (BEC) of $^{174}$Yb atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a superposition of states with different internal and momentum quantum numbers. We observe a crossover with decreasing driving strength between a regime of damped oscillations, where coherent driving prevails, and an incoherent regime, where relaxation takes over. Several relaxation mechanisms are involved: inelastic losses involving two excited atoms, leading to a non-exponential decay of populations; Doppler broadening due to the finite momentum width of the BEC and inhomogeneous elastic interactions, both leading to dephasing and to damping of the oscillations. We compare our observations to a two-component Gross-Pitaevskii (GP) model that fully includes these effects. For small or moderate densities, the damping of the oscillations is mostly due to Doppler broadening. In this regime, we find excellent agreement between the model and the experimental results. For higher densities, the role of interactions increases and so does the damping rate of the oscillations. The damping in the GP model is less pronounced than in the experiment, possibly a hint for many-body effects not captured by the mean-field description.



rate research

Read More

Periodically-driven quantum systems are currently explored in view of realizing novel many-body phases of matter. This approach is particularly promising in gases of ultracold atoms, where sophisticated shaking protocols can be realized and inter-particle interactions are well controlled. The combination of interactions and time-periodic driving, however, often leads to uncontrollable heating and instabilities, potentially preventing practical applications of Floquet-engineering in large many-body quantum systems. In this work, we experimentally identify the existence of parametric instabilities in weakly-interacting Bose-Einstein condensates in strongly-driven optical lattices through momentum-resolved measurements. Parametric instabilities can trigger the destruction of weakly-interacting Bose-Einstein condensates through the rapid growth of collective excitations, in particular in systems with weak harmonic confinement transverse to the lattice axis.
108 - Arko Roy , Soumya Bera , Kush Saha 2020
We theoretically study the non-linear response of interacting neutral bosonic gas in a synthetically driven one-dimensional optical lattice. In particular, we examine the bosonic analogue of electronic higher harmonic generation in a strong time-dependent synthetic vector potential manifesting itself as the synthetic electric field. We show that the vector potential can generate reasonably high harmonics in the insulating regime, while the superfluid regime exhibits only a few harmonics. In the insulating regime, the number of harmonics increases with the increase in the strength of the vector potential. This originates primarily due to the field-driven resonant and non-resonant excitations in the neutral Mott state and their recombination with the ground state. If the repulsive interaction between two atoms ($U$) is close to the strength of the gauge potential ($A_0$), the resonant quasiparticle-quasihole pairs on nearest-neighbor sites, namely dipole states are found to a play a dominant role in the generating higher harmonics. However, in the strong-field limit $A_0gg U$, the nonresonant states where quasiparticle-quasihole pairs are not on nearest-neighbor sites give rise to higher harmonics.
We study the two-body bound and scattering states of two particles in a one dimensional optical lattice in the presence of a coherent coupling between two internal atomic levels. Due to the interplay between periodic potential, interactions and coherent coupling, the internal structure of the bound states depends on their center of mass momentum. This phenomenon corresponds to an effective momentum-dependent magnetic field for the dimer pseudo-spin, which could be observed in a chirping of the precession frequency during Bloch oscillations. The essence of this effect can be easily interpreted in terms of an effective bound state Hamiltonian. Moreover for indistinguishable bosons, the two-body eigenstates can present simultaneously attractive and repulsive bound-state nature or even bound and scattering properties.
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of spin-1 bosons trapped in a square optical lattice. The phase diagram is characterized by the mobility of the particles (Mott insulating or superfluid phase) and by their magnetic properties. For ferromagnetic on-site interactions, the whole phase diagram is ferromagnetic and the Mott insulators-superfluid phase transitions are second order. For antiferromagnetic on-site interactions, spin nematic order is found in the odd Mott lobes and in the superfluid phase. Furthermore, the superfluid-insulator phase transition is first or second order depending on whether the density in the Mott is even or odd. Inside the even Mott lobes, we observe a singlet-to-nematic transition for certain values of the interactions. This transition appears to be first order.
We report on high-resolution optical spectroscopy of interacting bosonic $^{174}$Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow clock transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا