Do you want to publish a course? Click here

Coupled Fluid Density and Motion from Single Views

95   0   0.0 ( 0 )
 Added by Marie-Lena Eckert
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a novel method to reconstruct a fluids 3D density and motion based on just a single sequence of images. This is rendered possible by using powerful physical priors for this strongly under-determined problem. More specifically, we propose a novel strategy to infer density updates strongly coupled to previous and current estimates of the flow motion. Additionally, we employ an accurate discretization and depth-based regularizers to compute stable solutions. Using only one view for the reconstruction reduces the complexity of the capturing setup drastically and could even allow for online video databases or smart-phone videos as inputs. The reconstructed 3D velocity can then be flexibly utilized, e.g., for re-simulation, domain modification or guiding purposes. We will demonstrate the capacity of our method with a series of synthetic test cases and the reconstruction of real smoke plumes captured with a Raspberry Pi camera.



rate research

Read More

A long-standing challenge in scene analysis is the recovery of scene arrangements under moderate to heavy occlusion, directly from monocular video. While the problem remains a subject of active research, concurrent advances have been made in the context of human pose reconstruction from monocular video, including image-space feature point detection and 3D pose recovery. These methods, however, start to fail under moderate to heavy occlusion as the problem becomes severely under-constrained. We approach the problems differently. We observe that people interact similarly in similar scenes. Hence, we exploit the correlation between scene object arrangement and motions performed in that scene in both directions: first, typical motions performed when interacting with objects inform us about possible object arrangements; and second, object arrangements, in turn, constrain the possible motions. We present iMapper, a data-driven method that focuses on identifying human-object interactions, and jointly reasons about objects and human movement over space-time to recover both a plausible scene arrangement and consistent human interactions. We first introduce the notion of characteristic interactions as regions in space-time when an informative human-object interaction happens. This is followed by a novel occlusion-aware matching procedure that searches and aligns such characteristic snapshots from an interaction database to best explain the input monocular video. Through extensive evaluations, both quantitative and qualitative, we demonstrate that iMapper significantly improves performance over both dedicated state-of-the-art scene analysis and 3D human pose recovery approaches, especially under medium to heavy occlusion.
The creation of high-fidelity computer-generated (CG) characters used in film and gaming requires intensive manual labor and a comprehensive set of facial assets to be captured with complex hardware, resulting in high cost and long production cycles. In order to simplify and accelerate this digitization process, we propose a framework for the automatic generation of high-quality dynamic facial assets, including rigs which can be readily deployed for artists to polish. Our framework takes a single scan as input to generate a set of personalized blendshapes, dynamic and physically-based textures, as well as secondary facial components (e.g., teeth and eyeballs). Built upon a facial database consisting of pore-level details, with over $4,000$ scans of varying expressions and identities, we adopt a self-supervised neural network to learn personalized blendshapes from a set of template expressions. We also model the joint distribution between identities and expressions, enabling the inference of the full set of personalized blendshapes with dynamic appearances from a single neutral input scan. Our generated personalized face rig assets are seamlessly compatible with cutting-edge industry pipelines for facial animation and rendering. We demonstrate that our framework is robust and effective by inferring on a wide range of novel subjects, and illustrate compelling rendering results while animating faces with generated customized physically-based dynamic textures.
The field of physics-based animation is gaining importance due to the increasing demand for realism in video games and films, and has recently seen wide adoption of data-driven techniques, such as deep reinforcement learning (RL), which learn control from (human) demonstrations. While RL has shown impressive results at reproducing individual motions and interactive locomotion, existing methods are limited in their ability to generalize to new motions and their ability to compose a complex motion sequence interactively. In this paper, we propose a physics-based universal neural controller (UniCon) that learns to master thousands of motions with different styles by learning on large-scale motion datasets. UniCon is a two-level framework that consists of a high-level motion scheduler and an RL-powered low-level motion executor, which is our key innovation. By systematically analyzing existing multi-motion RL frameworks, we introduce a novel objective function and training techniques which make a significant leap in performance. Once trained, our motion executor can be combined with different high-level schedulers without the need for retraining, enabling a variety of real-time interactive applications. We show that UniCon can support keyboard-driven control, compose motion sequences drawn from a large pool of locomotion and acrobatics skills and teleport a person captured on video to a physics-based virtual avatar. Numerical and qualitative results demonstrate a significant improvement in efficiency, robustness and generalizability of UniCon over prior state-of-the-art, showcasing transferability to unseen motions, unseen humanoid models and unseen perturbation.
Lighting plays a central role in conveying the essence and depth of the subject in a portrait photograph. Professional photographers will carefully control the lighting in their studio to manipulate the appearance of their subject, while consumer photographers are usually constrained to the illumination of their environment. Though prior works have explored techniques for relighting an image, their utility is usually limited due to requirements of specialized hardware, multiple images of the subject under controlled or known illuminations, or accurate models of geometry and reflectance. To this end, we present a system for portrait relighting: a neural network that takes as input a single RGB image of a portrait taken with a standard cellphone camera in an unconstrained environment, and from that image produces a relit image of that subject as though it were illuminated according to any provided environment map. Our method is trained on a small database of 18 individuals captured under different directional light sources in a controlled light stage setup consisting of a densely sampled sphere of lights. Our proposed technique produces quantitatively superior results on our datasets validation set compared to prior works, and produces convincing qualitative relighting results on a dataset of hundreds of real-world cellphone portraits. Because our technique can produce a 640 $times$ 640 image in only 160 milliseconds, it may enable interactive user-facing photographic applications in the future.
The Japanese comic format known as Manga is popular all over the world. It is traditionally produced in black and white, and colorization is time consuming and costly. Automatic colorization methods generally rely on greyscale values, which are not present in manga. Furthermore, due to copyright protection, colorized manga available for training is scarce. We propose a manga colorization method based on conditional Generative Adversarial Networks (cGAN). Unlike previous cGAN approaches that use many hundreds or thousands of training images, our method requires only a single colorized reference image for training, avoiding the need of a large dataset. Colorizing manga using cGANs can produce blurry results with artifacts, and the resolution is limited. We therefore also propose a method of segmentation and color-correction to mitigate these issues. The final results are sharp, clear, and in high resolution, and stay true to the characters original color scheme.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا